Compatible Lie Brackets and the Yang--Baxter Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 195-207
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that any pair of compatible Lie brackets with a common invariant form produces a nonconstant solution of the classical Yang–Baxter equation. We describe the corresponding Poisson brackets, Manin triples, and Lie bialgebras. It turns out that all bialgebras associated with the solutions found by Belavin and Drinfeld are isomorphic to some bialgebras generated by our solutions. For any compatible pair, we construct a double with a common invariant form and find the corresponding solution of the quantum Yang–Baxter equation for this double.
Keywords:
Yang–Baxter equation, Lie bialgebra, Manin triple.
@article{TMF_2006_146_2_a0,
author = {I. Z. Golubchik and V. V. Sokolov},
title = {Compatible {Lie} {Brackets} and the {Yang--Baxter} {Equation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {195--207},
publisher = {mathdoc},
volume = {146},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a0/}
}
TY - JOUR AU - I. Z. Golubchik AU - V. V. Sokolov TI - Compatible Lie Brackets and the Yang--Baxter Equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 195 EP - 207 VL - 146 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a0/ LA - ru ID - TMF_2006_146_2_a0 ER -
I. Z. Golubchik; V. V. Sokolov. Compatible Lie Brackets and the Yang--Baxter Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 195-207. http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a0/