Mots-clés : soliton, Liouville equation.
@article{TMF_2006_146_1_a9,
author = {A. T. Filippov},
title = {Integrable {Models} of $(1+1)${-Dimensional} {Dilaton} {Gravity} {Coupled} to {Scalar} {Matter}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {115--131},
year = {2006},
volume = {146},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a9/}
}
A. T. Filippov. Integrable Models of $(1+1)$-Dimensional Dilaton Gravity Coupled to Scalar Matter. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 115-131. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a9/
[1] V. de Alfaro, A. T. Filippov, Integrable low dimensional models for black holes and cosmologies from high dimensional theories, hep-th/0504101 | MR
[2] D. Grumiller, W. Kummer, D. Vassilevich, Phys. Rep., 369 (2002), 327 ; hep-th/0204253 | DOI | MR | Zbl
[3] P. Szekeres, J. Math. Phys., 13 (1972), 286 | DOI | MR
[4] A. T. Filippov, V. G. Filippov, YaF, 61:10 (1998), 1757; hep-th/9803059
[5] H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell's Equations, Dover, N.Y., 1955 | MR | Zbl
[6] N. M. J. Woodhouse, Class. Q. Grav., 6 (1989), 933 | DOI | MR | Zbl
[7] N. Rosen, Phys. Z. der Sowjetunion, 12 (1937), 366 | Zbl
[8] V. A. Belinskii, V. E. Zakharov, ZhETF, 75:6 (1978), 1955 | MR
[9] H. Nicolai, D. Korotkin, H. Samtleben, Integrable classical and quantum gravity, hep-th/9612065
[10] P. Breitenlohner, D. Maison, Ann. Inst. H. Poincaré, 46 (1987), 215 | MR | Zbl
[11] A. T. Filippov, Mod. Phys. Lett. A, 11 (1996), 1691 ; Int. J. Mod. Phys. A, 12 (1997), 13 ; hep-th/9605008 | DOI | MR | Zbl | DOI | Zbl
[12] A. T. Filippov, Phys. Part. Nucl., 32S1 (2001), 38; ЯФ, 65 (2002), 1–5
[13] J. L. Gervais, Int. J. Mod. Phys. A, 6 (1991), 2805 | DOI | MR
[14] A. T. Filippov, D. Maison, Class. Q. Grav., 20 (2003), 1779 ; gr-qc/0210081 | DOI | MR | Zbl
[15] M. Gasperini, G. Veneziano, Phys. Rep., 373 (2003), 1 ; hep-th/0207130 | DOI | MR