Integrable Models of $(1+1)$-Dimensional Dilaton Gravity Coupled to Scalar Matter
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 115-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a class of explicitly integrable models of $(1+1)$-dimensional dilaton gravity coupled to scalar fields in sufficient detail. The equations of motion of these models reduce to systems of Liouville equations with energy and momentum constraints. We construct the general solution of the equations and constraints in terms of chiral moduli fields explicitly and briefly discuss some extensions of the basic integrable model. These models can be related to higher-dimensional supergravity theories, but we mostly consider them independently of such interpretations. We also briefly review other integrable models of two-dimensional dilaton gravity.
Keywords: dilaton gravity, integrable models
Mots-clés : soliton, Liouville equation.
@article{TMF_2006_146_1_a9,
     author = {A. T. Filippov},
     title = {Integrable {Models} of $(1+1)${-Dimensional} {Dilaton} {Gravity} {Coupled} to {Scalar} {Matter}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--131},
     year = {2006},
     volume = {146},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a9/}
}
TY  - JOUR
AU  - A. T. Filippov
TI  - Integrable Models of $(1+1)$-Dimensional Dilaton Gravity Coupled to Scalar Matter
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 115
EP  - 131
VL  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a9/
LA  - ru
ID  - TMF_2006_146_1_a9
ER  - 
%0 Journal Article
%A A. T. Filippov
%T Integrable Models of $(1+1)$-Dimensional Dilaton Gravity Coupled to Scalar Matter
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 115-131
%V 146
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a9/
%G ru
%F TMF_2006_146_1_a9
A. T. Filippov. Integrable Models of $(1+1)$-Dimensional Dilaton Gravity Coupled to Scalar Matter. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 115-131. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a9/

[1] V. de Alfaro, A. T. Filippov, Integrable low dimensional models for black holes and cosmologies from high dimensional theories, hep-th/0504101 | MR

[2] D. Grumiller, W. Kummer, D. Vassilevich, Phys. Rep., 369 (2002), 327 ; hep-th/0204253 | DOI | MR | Zbl

[3] P. Szekeres, J. Math. Phys., 13 (1972), 286 | DOI | MR

[4] A. T. Filippov, V. G. Filippov, YaF, 61:10 (1998), 1757; hep-th/9803059

[5] H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell's Equations, Dover, N.Y., 1955 | MR | Zbl

[6] N. M. J. Woodhouse, Class. Q. Grav., 6 (1989), 933 | DOI | MR | Zbl

[7] N. Rosen, Phys. Z. der Sowjetunion, 12 (1937), 366 | Zbl

[8] V. A. Belinskii, V. E. Zakharov, ZhETF, 75:6 (1978), 1955 | MR

[9] H. Nicolai, D. Korotkin, H. Samtleben, Integrable classical and quantum gravity, hep-th/9612065

[10] P. Breitenlohner, D. Maison, Ann. Inst. H. Poincaré, 46 (1987), 215 | MR | Zbl

[11] A. T. Filippov, Mod. Phys. Lett. A, 11 (1996), 1691 ; Int. J. Mod. Phys. A, 12 (1997), 13 ; hep-th/9605008 | DOI | MR | Zbl | DOI | Zbl

[12] A. T. Filippov, Phys. Part. Nucl., 32S1 (2001), 38; ЯФ, 65 (2002), 1–5

[13] J. L. Gervais, Int. J. Mod. Phys. A, 6 (1991), 2805 | DOI | MR

[14] A. T. Filippov, D. Maison, Class. Q. Grav., 20 (2003), 1779 ; gr-qc/0210081 | DOI | MR | Zbl

[15] M. Gasperini, G. Veneziano, Phys. Rep., 373 (2003), 1 ; hep-th/0207130 | DOI | MR