Hamiltonian Structures of Fermionic Two-Dimensional Toda Lattice Hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 90-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By exhibiting the corresponding Lax-pair representations, we propose a wide class of integrable two-dimensional (2D) fermionic Toda lattice (TL) hierarchies, which includes the 2D $N=(2\mid 2)$ and $N=(0\mid 2)$ supersymmetric TL hierarchies as particular cases. We develop the generalized graded $R$-matrix formalism using the generalized graded bracket on the space of graded operators with involution generalizing the graded commutator in superalgebras, which allows describing these hierarchies in the framework of the Hamiltonian formalism and constructing their first two Hamiltonian structures. We obtain the first Hamiltonian structure for both bosonic and fermionic Lax operators and the second Hamiltonian structure only for bosonic Lax operators.
Keywords: integrable systems, Toda lattices, Yang–Baxter equation.
Mots-clés : $R$-matrix
@article{TMF_2006_146_1_a7,
     author = {V. V. Gribanov and V. G. Kadyshevskii and A. S. Sorin},
     title = {Hamiltonian {Structures} of {Fermionic} {Two-Dimensional} {Toda} {Lattice} {Hierarchies}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {90--102},
     year = {2006},
     volume = {146},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a7/}
}
TY  - JOUR
AU  - V. V. Gribanov
AU  - V. G. Kadyshevskii
AU  - A. S. Sorin
TI  - Hamiltonian Structures of Fermionic Two-Dimensional Toda Lattice Hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 90
EP  - 102
VL  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a7/
LA  - ru
ID  - TMF_2006_146_1_a7
ER  - 
%0 Journal Article
%A V. V. Gribanov
%A V. G. Kadyshevskii
%A A. S. Sorin
%T Hamiltonian Structures of Fermionic Two-Dimensional Toda Lattice Hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 90-102
%V 146
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a7/
%G ru
%F TMF_2006_146_1_a7
V. V. Gribanov; V. G. Kadyshevskii; A. S. Sorin. Hamiltonian Structures of Fermionic Two-Dimensional Toda Lattice Hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 90-102. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a7/

[1] A. V. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443; K Ueno, K. Takasaki, Adv. Stud. Pure Math., 4 (1984), 1 | MR | Zbl

[2] M. A. Olshanetsky, Commun. Math. Phys., 88 (1983), 63 ; D. A. Leites, M. V. Saveliev, V. V. Serganova, “Embeddings of $osp(1\mid 2)$ and the associated nonlinear supersymmetric equations”, Group Theoretical Methods in Physics, V. I (Yurmala, 1985), eds. M. A. Markov, V. I. Manko, V. V. Dodonov, VNU Sci. Press, Utrecht, 1986, 255 ; В. А. Андреев, ТМФ, 72:1 (1987), 112 | DOI | MR | Zbl | MR | MR | Zbl

[3] K. Ikeda, Lett. Math. Phys., 14 (1987), 321 ; J. Evans, T. Hollowood, Nucl. Phys. B, 352 (1991), 723 ; O. Lechtenfeld, A. Sorin, Nucl. Phys. B, 557 (1999), 535 ; J. Nonlinear Math. Phys., 8 (2001), 183 ; 11 (2004), 294 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[4] V. G. Kadyshevsky, A. S. Sorin, “Supersymmetric Toda lattice hierarchies”, Integrable Hierarchies and Modern Physical Theories, eds. H. Aratyn, A. S. Sorin, Kluwer, Dordrecht–Boston–London, 2001, 289 ; nlin.SI/0011009 | DOI | MR | Zbl

[5] V. V. Gribanov, V. G. Kadyshevsky, A. S. Sorin, Czech. J. Phys., 54 (2004), 1289 | DOI | MR

[6] V. V. Gribanov, V. G. Kadyshevsky, A. S. Sorin, Discrete Dyn. Nat. Soc., 2004:1 (2004), 113 | DOI | MR | Zbl

[7] V. B. Derjagin, A. N. Leznov, A. Sorin, Nucl. Phys. B, 527 (1998), 643 | DOI | MR | Zbl

[8] G. Carlet, The Hamiltonian structures of the two-dimensional Toda lattice and R-matrices, math-ph/0403049 | MR

[9] V. G. Kadyshevskii, A. S. Sorin, TMF, 132:2 (2002), 222 ; nlin.SI/0206044 | DOI | MR

[10] H. Aratyn, K. Bering, Int. J. Mod. Phys. A, 20 (2005), 1367 ; nlin.SI/0402014 | DOI | MR | Zbl

[11] M. A. Semenov-Tyan-Shanskii, Funkts. analiz i ego prilozh., 17 (1983), 17 | MR

[12] C. M. Yung, Mod. Phys. Lett., 8 (1993), 129 | DOI | MR | Zbl

[13] W. Oevel, O. Ragnisco, Physica A, 161 (1989), 181 | DOI | MR | Zbl

[14] P. P. Kulish, E. K. Sklyanin, Zap. nauchn. semin. LOMI, 95, 1980, 129 | MR