Izergin–Korepin Determinant at a Third Root of Unity
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 65-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the partition function of the inhomogeneous six-vertex model defined on an $(n\times n)$ square lattice. This function depends on $2n$ spectral parameters $x_i$ and $y_i$ attached to the respective horizontal and vertical lines. In the case of the domain-wall boundary conditions, it is given by the Izergin–Korepin determinant. For $q$ being an $N$-th root of unity, the partition function satisfies a special linear functional equation. This equation is particularly simple and useful when the crossing parameter is $\eta=2\pi/3$, i. e., $N = 3$. It is well known, for example, that the partition function is symmetric in both the $\{x\}$ and the $\{y\}$ variables. Using the abovementioned equation, we find that in the case of $\eta=2\pi/3$, it is symmetric in the union $\{x\}\cup\{y\}$. In addition, this equation can be used to solve some of the problems related to enumerating alternating-sign matrices. In particular, we reproduce the refined alternating-sign matrix enumeration discovered by Mills, Robbins, and Rumsey and proved by Zeilberger, and we obtain formulas for the doubly refined enumeration of these matrices.
Keywords: alternating-sign matrices, enumeration, square-ice model.
@article{TMF_2006_146_1_a5,
     author = {Yu. G. Stroganov},
     title = {Izergin{\textendash}Korepin {Determinant} at {a~Third} {Root} of {Unity}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {65--76},
     year = {2006},
     volume = {146},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a5/}
}
TY  - JOUR
AU  - Yu. G. Stroganov
TI  - Izergin–Korepin Determinant at a Third Root of Unity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 65
EP  - 76
VL  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a5/
LA  - ru
ID  - TMF_2006_146_1_a5
ER  - 
%0 Journal Article
%A Yu. G. Stroganov
%T Izergin–Korepin Determinant at a Third Root of Unity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 65-76
%V 146
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a5/
%G ru
%F TMF_2006_146_1_a5
Yu. G. Stroganov. Izergin–Korepin Determinant at a Third Root of Unity. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 65-76. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a5/

[1] V. E. Korepin, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[2] A. G. Izergin, DAN SSSR, 297 (1987), 331–333 | MR | Zbl

[3] N. M. Bogolyubov, V. E. Korepin, A. G. Izergin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl

[4] G. Kuperberg, Int. Math. Res. Notices, 3 (1996), 139–150 | DOI | MR | Zbl

[5] W. H. Mills, D. P. Robbins, H. Rumsey, J. Comb. Theory, 34 (1983), 340–359 | DOI | MR | Zbl

[6] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, J. Algebr. Comb., 1 (1992), 111–132 | DOI | MR | Zbl

[7] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[8] W. H. Mills, D. P. Robbins, H. Rumsey, Invent. Math., 66 (1982), 73–87 | DOI | MR | Zbl

[9] D. Zeilberger, New York J. Math., 2 (1996), 59–68 | MR | Zbl

[10] Yu. G. Stroganov, J. Phys. A, 34 (2001), L179–L185 | DOI | MR | Zbl

[11] G. D. Carroll, E-mail message to private “domino” forum, 04/11/02; for access to forum contact Jim Propp at propp@math.wisc.edu