Integrable Model of Interacting Elliptic Tops
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 55-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a method for constructing a system of interacting elliptic tops. It is integrable and symplectomorphic to the Calogero–Moser model by construction.
Keywords: integrable systems, algebraic geometry, symplectic geometry.
@article{TMF_2006_146_1_a4,
     author = {A. V. Zotov and A. M. Levin},
     title = {Integrable {Model} of {Interacting} {Elliptic} {Tops}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a4/}
}
TY  - JOUR
AU  - A. V. Zotov
AU  - A. M. Levin
TI  - Integrable Model of Interacting Elliptic Tops
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 55
EP  - 64
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a4/
LA  - ru
ID  - TMF_2006_146_1_a4
ER  - 
%0 Journal Article
%A A. V. Zotov
%A A. M. Levin
%T Integrable Model of Interacting Elliptic Tops
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 55-64
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a4/
%G ru
%F TMF_2006_146_1_a4
A. V. Zotov; A. M. Levin. Integrable Model of Interacting Elliptic Tops. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 55-64. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a4/