Toward a Theory of Spaces of Constant Curvature
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 42-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct some examples of three-dimensional metrics of constant curvature defined by the solutions of nonlinear integrable differential equations and their generalizations and study the properties of Riemann extensions of the metrics of constant curvature. We discuss the connection with the theory of normal Riemannian spaces.
Keywords: Riemann extension, spaces of constant curvature, Korteveg-de Vries equation.
@article{TMF_2006_146_1_a3,
     author = {V. S. Dryuma},
     title = {Toward a {Theory} of {Spaces} of {Constant} {Curvature}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {42--54},
     year = {2006},
     volume = {146},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a3/}
}
TY  - JOUR
AU  - V. S. Dryuma
TI  - Toward a Theory of Spaces of Constant Curvature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 42
EP  - 54
VL  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a3/
LA  - ru
ID  - TMF_2006_146_1_a3
ER  - 
%0 Journal Article
%A V. S. Dryuma
%T Toward a Theory of Spaces of Constant Curvature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 42-54
%V 146
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a3/
%G ru
%F TMF_2006_146_1_a3
V. S. Dryuma. Toward a Theory of Spaces of Constant Curvature. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 42-54. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a3/

[1] V. S. Dryuma, “Proektivnye svoistva “slabo kommutiruyuschikh” semeistv operatorov”, IX Vsesoyuznaya geometricheskaya konferentsiya, Tezisy soobschenii (Kishinev, 20–22 sentyabrya 1988 g.), ed. A. M. Zamorzaev, Shtiintsa, Kishinev, 1988, 104–105 | MR

[2] V. S. Dryuma, Matematicheskie issledovaniya, 124 (1992), 54–68; ТМФ, 99:2 (1993), 241–249 | MR

[3] V. Zakharov, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[4] T. Wolf, J. Math. Phys., 27:9 (1986), 2354–2359 | DOI | MR | Zbl

[5] R. Jackiw, A pure cotton kink in a funny place, math-ph/0403044 | MR

[6] E. M. Paterson, A. G. Walker, Quart. J. Math. (Oxford Ser.), 3 (1952), 19–28 ; V. Dryuma, Mat. Fiz. Anal. Geom., 10:3 (2003), 1–19 ; “The Riemann and Einstein–Weyl geometries in the theory of ODE's, their applications and all that”, New Trends in Integrability and Partial Solvability, Proc. of the NATO Advanced Research Workshop (Cadiz, Spain, June 12–16, 2002), NATO Sci. Ser. II: Math., Phys., Chem., 132, eds. A. B. Shabat et al., Kluwer, Dordrecht, 2004, 115–156 ; В. Дрюма, ТМФ, 128:1 (2001), 15–26 ; nlin.SI/0303023 | DOI | MR | MR | MR | Zbl | DOI | MR | Zbl

[7] V. Sobchuk, Tr. semin. vektor. tenzor. anal., 15 (1968), 65–76 | MR

[8] V. Dryuma, Bul. Acad. Stiinte Repub. Mold. Mat., 1:26 (1998), 55–68 | MR