Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero--Moser Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 31-41

Voir la notice de l'article provenant de la source Math-Net.Ru

Letting $A_l(x)$ denote the commuting analytic difference operators of elliptic relativistic Calogero–Moser type, we present and study zero-eigenvalue eigenfunctions for the operators $A_l(x)-A_l(-y)$ ($l=1,2,\dots,N$, $x,y\in\mathbb C^N$) The eigenfunctions are products of elliptic gamma functions. They are invariant under permutations of $x_1,\dots,x_N$ and $y_1,\dots,y_N$ and under interchange of the step-size parameters.
Keywords: relativistic Calogero-Moser systems, joint eigenfunctions, elliptic functional equations, elliptic gamma function.
@article{TMF_2006_146_1_a2,
     author = {S. Ruijsenaars},
     title = {Zero-Eigenvalue {Eigenfunctions} for {Differences} of {Elliptic} {Relativistic} {Calogero--Moser} {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {31--41},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a2/}
}
TY  - JOUR
AU  - S. Ruijsenaars
TI  - Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero--Moser Hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 31
EP  - 41
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a2/
LA  - ru
ID  - TMF_2006_146_1_a2
ER  - 
%0 Journal Article
%A S. Ruijsenaars
%T Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero--Moser Hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 31-41
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a2/
%G ru
%F TMF_2006_146_1_a2
S. Ruijsenaars. Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero--Moser Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 31-41. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a2/