Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero–Moser Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 31-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Letting $A_l(x)$ denote the commuting analytic difference operators of elliptic relativistic Calogero–Moser type, we present and study zero-eigenvalue eigenfunctions for the operators $A_l(x)-A_l(-y)$ ($l=1,2,\dots,N$, $x,y\in\mathbb C^N$) The eigenfunctions are products of elliptic gamma functions. They are invariant under permutations of $x_1,\dots,x_N$ and $y_1,\dots,y_N$ and under interchange of the step-size parameters.
Keywords: relativistic Calogero-Moser systems, joint eigenfunctions, elliptic functional equations, elliptic gamma function.
@article{TMF_2006_146_1_a2,
     author = {S. Ruijsenaars},
     title = {Zero-Eigenvalue {Eigenfunctions} for {Differences} of {Elliptic} {Relativistic} {Calogero{\textendash}Moser} {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {31--41},
     year = {2006},
     volume = {146},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a2/}
}
TY  - JOUR
AU  - S. Ruijsenaars
TI  - Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero–Moser Hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 31
EP  - 41
VL  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a2/
LA  - ru
ID  - TMF_2006_146_1_a2
ER  - 
%0 Journal Article
%A S. Ruijsenaars
%T Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero–Moser Hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 31-41
%V 146
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a2/
%G ru
%F TMF_2006_146_1_a2
S. Ruijsenaars. Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero–Moser Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 31-41. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a2/

[1] S. N. M. Ruijsenaars, H. Schneider, Ann. Phys. (N. Y.), 170 (1986), 370–405 | DOI | MR | Zbl

[2] S. N. M. Ruijsenaars, Commun. Math. Phys., 110 (1987), 191–213 | DOI | MR | Zbl

[3] Dzh. G. B. Baiatt-Smit, Kh. U. Braden, TMF, 133:3 (2002), 353–366 ; nlin.SI/0201014 | DOI | MR

[4] S. N. M. Ruijsenaars, “Elliptic integrable systems of Calogero–Moser type: Some new results on joint eigenfunctions”, Proc. of the 2004 Kyoto Workshop on Elliptic Integrable Systems, eds. M. Noumi, K. Takasaki (to appear)

[5] S. N. M. Ruijsenaars, “Systems of Calogero–Moser type”, Proc. of the 1994 Banff Summer School “Particles and Fields”, CRM Ser. Math. Phys., eds. G. Semenoff, L. Vinet, Springer, N.Y., 1999, 251–352 | MR

[6] Y. Komori, S. N. M. Ruijsenaars, “Elliptic integrable systems of Calogero–Moser type: A Survey”, Proc. of the 2004 Kyoto Workshop on Elliptic Integrable Systems, eds. M. Noumi, K. Takasaki (to appear)

[7] Y. Kajihara, M. Noumi, Indag. Math. (N. S.), 14 (2003), 395–421 | DOI | MR | Zbl

[8] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford, 1995 | MR | Zbl

[9] A. N. Kirillov, M. Noumi, Duke Math. J., 93 (1998), 1–39 | DOI | MR | Zbl

[10] Y. Kajihara, Adv. Math., 187 (2004), 53–97 | DOI | MR | Zbl

[11] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[12] T. Oshima, H. Sekiguchi, J. Math. Sci. Univ. Tokyo, 2 (1995), 1–75 | MR | Zbl

[13] E. Langmann, Lett. Math. Phys., 54 (2000), 279–289 | DOI | MR | Zbl

[14] S. N. M. Ruijsenaars, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl