Mots-clés : second-quantized Markov cocycles.
@article{TMF_2006_146_1_a14,
author = {G. G. Amosov},
title = {Evolution {Equations} for {Markov} {Cocycles} {Obtained} by {Second} {Quantization} in the {Symplectic} {Fock} {Space}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {186--192},
year = {2006},
volume = {146},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a14/}
}
TY - JOUR AU - G. G. Amosov TI - Evolution Equations for Markov Cocycles Obtained by Second Quantization in the Symplectic Fock Space JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 186 EP - 192 VL - 146 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a14/ LA - ru ID - TMF_2006_146_1_a14 ER -
G. G. Amosov. Evolution Equations for Markov Cocycles Obtained by Second Quantization in the Symplectic Fock Space. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 186-192. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a14/
[1] R. Hudson, K. R. Parthasarathy, Commun. Math. Phys., 93:3 (1984), 301–323 | DOI | MR | Zbl
[2] A. S. Holevo, Statistical Structure of Quantum Theory, Lecture Notes in Physics, 67, Springer, Berlin, 2001 | DOI | MR | Zbl
[3] V. Liebscher, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4 (2001), 215–219 ; J. M. Lindsay, S. J. Wills, J. Funct. Anal., 178:2 (2000), 269–305 | DOI | MR | Zbl | DOI | MR | Zbl
[4] G. G. Amosov, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3:2 (2000), 237–246 ; Int. J. Math. Math. Sci., 54 (2003), 3443–3467 ; Г. Г. Амосов, Теор. вероятн. применен., 49:1 (2004), 145–155 ; G. G. Amosov, A. D. Baranov, Proc. Am. Math. Soc., 132 (2004), 3269–3273 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[5] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR
[6] K. O. Friedrichs, Mathematical Aspects of the Quantum Theory of Fields, Interscience, London, 1953, Reprinted from Commun. Pure Appl. Math. V. 6 | MR | Zbl