Evolution Equations for Markov Cocycles Obtained by Second Quantization in the Symplectic Fock Space
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 186-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive a quantum stochastic differential equation satisfied by the unitary Markov cocycles obtained for a model situation during second quantization in the symmetric Fock space.
Keywords: quantum stochastic differential equation
Mots-clés : second-quantized Markov cocycles.
@article{TMF_2006_146_1_a14,
     author = {G. G. Amosov},
     title = {Evolution {Equations} for {Markov} {Cocycles} {Obtained} by {Second} {Quantization} in the {Symplectic} {Fock} {Space}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {186--192},
     year = {2006},
     volume = {146},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a14/}
}
TY  - JOUR
AU  - G. G. Amosov
TI  - Evolution Equations for Markov Cocycles Obtained by Second Quantization in the Symplectic Fock Space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 186
EP  - 192
VL  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a14/
LA  - ru
ID  - TMF_2006_146_1_a14
ER  - 
%0 Journal Article
%A G. G. Amosov
%T Evolution Equations for Markov Cocycles Obtained by Second Quantization in the Symplectic Fock Space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 186-192
%V 146
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a14/
%G ru
%F TMF_2006_146_1_a14
G. G. Amosov. Evolution Equations for Markov Cocycles Obtained by Second Quantization in the Symplectic Fock Space. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 186-192. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a14/

[1] R. Hudson, K. R. Parthasarathy, Commun. Math. Phys., 93:3 (1984), 301–323 | DOI | MR | Zbl

[2] A. S. Holevo, Statistical Structure of Quantum Theory, Lecture Notes in Physics, 67, Springer, Berlin, 2001 | DOI | MR | Zbl

[3] V. Liebscher, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4 (2001), 215–219 ; J. M. Lindsay, S. J. Wills, J. Funct. Anal., 178:2 (2000), 269–305 | DOI | MR | Zbl | DOI | MR | Zbl

[4] G. G. Amosov, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3:2 (2000), 237–246 ; Int. J. Math. Math. Sci., 54 (2003), 3443–3467 ; Г. Г. Амосов, Теор. вероятн. применен., 49:1 (2004), 145–155 ; G. G. Amosov, A. D. Baranov, Proc. Am. Math. Soc., 132 (2004), 3269–3273 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[5] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[6] K. O. Friedrichs, Mathematical Aspects of the Quantum Theory of Fields, Interscience, London, 1953, Reprinted from Commun. Pure Appl. Math. V. 6 | MR | Zbl