Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg--Landau Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 161-171

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the cubic complex Ginzburg–Landau equation. Using Hone's method, based on formal Laurent-series solutions and the residue theorem, we prove the absence of elliptic standing-wave solutions of this equation. This result complements a result by Hone, who proved the nonexistence of elliptic traveling-wave solutions. We show that it is more efficient to apply Hone's method to a system of polynomial differential equations rather than to an equivalent differential equation.
Keywords: standing wave, elliptic function, residue theorem, cubic complex Ginzburg–Landau equation.
Mots-clés : Laurent series
@article{TMF_2006_146_1_a12,
     author = {S. Yu. Vernov},
     title = {Proof of the {Absence} of {Elliptic} {Solutions} of the {Cubic} {Complex} {Ginzburg--Landau} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {161--171},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/}
}
TY  - JOUR
AU  - S. Yu. Vernov
TI  - Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg--Landau Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 161
EP  - 171
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/
LA  - ru
ID  - TMF_2006_146_1_a12
ER  - 
%0 Journal Article
%A S. Yu. Vernov
%T Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg--Landau Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 161-171
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/
%G ru
%F TMF_2006_146_1_a12
S. Yu. Vernov. Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg--Landau Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 161-171. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/