Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 161-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the cubic complex Ginzburg–Landau equation. Using Hone's method, based on formal Laurent-series solutions and the residue theorem, we prove the absence of elliptic standing-wave solutions of this equation. This result complements a result by Hone, who proved the nonexistence of elliptic traveling-wave solutions. We show that it is more efficient to apply Hone's method to a system of polynomial differential equations rather than to an equivalent differential equation.
Keywords: standing wave, elliptic function, residue theorem, cubic complex Ginzburg–Landau equation.
Mots-clés : Laurent series
@article{TMF_2006_146_1_a12,
     author = {S. Yu. Vernov},
     title = {Proof of the {Absence} of {Elliptic} {Solutions} of the {Cubic} {Complex} {Ginzburg{\textendash}Landau} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {161--171},
     year = {2006},
     volume = {146},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/}
}
TY  - JOUR
AU  - S. Yu. Vernov
TI  - Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 161
EP  - 171
VL  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/
LA  - ru
ID  - TMF_2006_146_1_a12
ER  - 
%0 Journal Article
%A S. Yu. Vernov
%T Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 161-171
%V 146
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/
%G ru
%F TMF_2006_146_1_a12
S. Yu. Vernov. Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 161-171. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/

[1] N. A. Kudryashov, Matem. model., 1 (1989), 151 | MR | Zbl

[2] G. S. Santos, J. Phys. Soc. Japan, 58 (1989), 4301 | DOI | MR

[3] R. Conte, M. Musette, J. Phys. A, 25 (1992), 5609 ; В. А. Антонов, Е. И. Тимошкова, Астрон. журн., 70 (1993), 265 | DOI | MR | Zbl | MR | Zbl

[4] R. Conte, M. Musette, Physica D, 69 (1993), 1 | DOI | MR

[5] N. N. Akhmediev, V. V. Afanasjev, J. M. Soto-Crespo, Rev. Phys. E, 53 (1996), 1190 | DOI

[6] E. I. Timoshkova, Astron. zhurn., 76 (1999), 470

[7] M. Musette, R. Conte, Physica D, 181 (2003), 70 ; nlin.PS/0302051 | DOI | MR | Zbl

[8] E. Fan, J. Phys. A, 36 (2003), 7009 | DOI | MR | Zbl

[9] N. A. Kudryashov, Nonlinear differential equations with exact solutions expressed via the Weierstrass function, nlin.CD/0312035

[10] E. I. Timoshkova, S. Yu. Vernov, YaF, 68:11 (2005), 2008 ; ; A. G. Nikitin, T. A. Barannyk, Solitary wave and other solutions for nonlinear heat equations, ; N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations, math-ph/0402049math-ph/0303004nlin.SI/0406007 | MR | MR | MR

[11] V. A. Vladimirov, E. V. Kutafina, Rep. Math. Phys., 54 (2004), 261 | DOI | MR | Zbl

[12] R. Conte, M. Musette, Solitary waves of nonlinear nonintegrable equations, nlin.PS/0407026 | MR

[13] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, RKhD, Moskva–Izhevsk, 2004

[14] M. J. Ablowitz, A. Ramani, H. Segur, Lett. Nuovo Cimento., 23 (1978), 333 ; J. Math. Phys., 21 (1980), 715 ; 1006 | DOI | MR | DOI | MR | Zbl | MR | Zbl

[15] P. Painlevé, Leçons sur la théorie analytique des équations différentielles (Leçons de Stockholm, 1895), Hermann, Paris, 1896; Reprinted in: ØE uvres de Paul Painlevé, V. 1, Editions du CNRS, Paris, 1973 | MR | Zbl

[16] S. Yu. Vernov, TMF, 135 (2003), 409 | DOI | MR | Zbl

[17] A. N. W. Hone, Physica D, 205 (2005), 292 | DOI | MR | Zbl

[18] V. L. Ginzburg, L. D. Landau, ZhETF, 20 (1950), 1064

[19] I. Aranson, L. Kramer, Rev. Mod. Phys., 74 (2002), 99 ; cond-mat/0106115 | DOI | MR | Zbl

[20] M. C. Cross, P. C. Hohenberg, Rev. Mod. Phys., 65 (1993), 851 | DOI

[21] M. van Hecke, Phys. Rev. Lett., 80 (1998), 1896 | DOI

[22] G. P. Agrawal, Nonlinear Fiber Optics, Acad. Press, Boston, 1989

[23] M. van Hecke, C. Storm, W. van Saarlos, Physica D, 133 (1999), 1 ; ; P. Manneville, Dissipative Structures and Weak Turbulence, Acad. Press, Boston, 1990 Patt-sol/9902005 | DOI | MR | MR

[24] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 ; А. Ньюэлл, Солитоны в математике и физике, Мир, М., 1989 ; A. V. Mikhailov, E. A. Kuznetsov, A. C. Newell, V. E. Zakharov (eds), The Nonlinear Schrödinger Equations, Proc. Conf. on the Nonlinear Schrödinger Equation (Chernogolovka, Russia, 1994), Elsevier, Amsterdam, 1995 ; Physica D, 87 (1995), 1–380 | MR | Zbl | MR | MR | DOI | MR

[25] K. Nozaki, N. Bekki, J. Phys. Soc. Japan, 53 (1984), 1581 ; N. Bekki, K. Nozaki, Phys. Lett. A, 110 (1985), 133 | DOI | MR | DOI

[26] W. van Saarloos, P. C. Hohenberg, Physica D, 56 (1992), 303 ; Erratum 69 (1993), 209 | DOI | MR | Zbl | DOI | MR

[27] L. Brusch, A. Torcini, M. van Hecke, M.G. Zimmermann, M. Bär, Physica D, 160 (2001), 127 ; ; M. van Hecke, Physica D, 174 (2003), 134 ; nlin.CD/0104029cond-mat/01100068 | DOI | MR | Zbl | DOI | MR | Zbl

[28] F. Cariello, M. Tabor, Physica D, 39 (1989), 77 | DOI | MR | Zbl

[29] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii (ellipticheskie i avtomorfnye funktsii, funktsii Lame i Mate), Nauka, M., 1967 ; А. Гурвиц, Р. Курант, Теория функций, Наука, М., 1968 | MR | MR

[30] S. Yu. Vernov, “Construction of single-valued solutions for nonintegrable systems with the help of the Painlevé test”, Proceedings of the International Conference “Computer Algebra in Scientific Computing” (St. Petersburg, Russia, July 12–19, 2004), eds. V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov, Technische Univ., München, Garching, 2004, 457 ; nlin.SI/0407062 | MR