Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg--Landau Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 161-171
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the cubic complex Ginzburg–Landau equation. Using Hone's method, based on formal Laurent-series solutions and the residue theorem, we prove the absence of elliptic standing-wave solutions of this equation. This result complements a result by Hone, who proved the nonexistence of elliptic traveling-wave solutions. We show that it is more efficient to apply Hone's method to a system of polynomial differential equations rather than to an equivalent differential equation.
Keywords:
standing wave, elliptic function, residue theorem, cubic complex Ginzburg–Landau equation.
Mots-clés : Laurent series
Mots-clés : Laurent series
@article{TMF_2006_146_1_a12,
author = {S. Yu. Vernov},
title = {Proof of the {Absence} of {Elliptic} {Solutions} of the {Cubic} {Complex} {Ginzburg--Landau} {Equation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {161--171},
publisher = {mathdoc},
volume = {146},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/}
}
TY - JOUR AU - S. Yu. Vernov TI - Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg--Landau Equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 161 EP - 171 VL - 146 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/ LA - ru ID - TMF_2006_146_1_a12 ER -
S. Yu. Vernov. Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg--Landau Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 161-171. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a12/