AdS3/CFT2 on a Torus in the Sum over Geometries
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 17-30
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the $AdS_3/CFT_2$ correspondence for the Euclidean $AdS_3$ space compactified on a solid torus with the CFT field on the regularizing boundary surface in the bulk. Correlation functions corresponding to the bulk theory at a finite temperature tend to the standard CFT correlation functions in the limit of removed regularization. In the sum over geometries in both the regular and the $\mathbb Z_N$ orbifold cases, the two-point correlation function for massless modes transforms into a finite sum of products of the conformal-anticonformal CFT Green's functions up to divergent terms proportional to the volume of the $SL(2,\mathbb Z)/\mathbb Z$ group.
Keywords:
hyperbolic spaces, Green's function, orbifolds.
@article{TMF_2006_146_1_a1,
author = {L. O. Chekhov},
title = {AdS3/CFT2 on a {Torus} in the {Sum} over {Geometries}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {17--30},
publisher = {mathdoc},
volume = {146},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a1/}
}
L. O. Chekhov. AdS3/CFT2 on a Torus in the Sum over Geometries. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a1/