AdS3/CFT2 on a Torus in the Sum over Geometries
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 17-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the $AdS_3/CFT_2$ correspondence for the Euclidean $AdS_3$ space compactified on a solid torus with the CFT field on the regularizing boundary surface in the bulk. Correlation functions corresponding to the bulk theory at a finite temperature tend to the standard CFT correlation functions in the limit of removed regularization. In the sum over geometries in both the regular and the $\mathbb Z_N$ orbifold cases, the two-point correlation function for massless modes transforms into a finite sum of products of the conformal-anticonformal CFT Green's functions up to divergent terms proportional to the volume of the $SL(2,\mathbb Z)/\mathbb Z$ group.
Keywords: hyperbolic spaces, Green's function, orbifolds.
@article{TMF_2006_146_1_a1,
     author = {L. O. Chekhov},
     title = {AdS3/CFT2 on a {Torus} in the {Sum} over {Geometries}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a1/}
}
TY  - JOUR
AU  - L. O. Chekhov
TI  - AdS3/CFT2 on a Torus in the Sum over Geometries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 17
EP  - 30
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a1/
LA  - ru
ID  - TMF_2006_146_1_a1
ER  - 
%0 Journal Article
%A L. O. Chekhov
%T AdS3/CFT2 on a Torus in the Sum over Geometries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 17-30
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a1/
%G ru
%F TMF_2006_146_1_a1
L. O. Chekhov. AdS3/CFT2 on a Torus in the Sum over Geometries. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a1/