Matrix Model and Stationary Problem in the Toda Chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the stationary problem for the Toda chain and show that the arising geometric data exactly correspond to the multisupport solutions of the one-matrix model with a polynomial potential. We calculate the Hamiltonians and symplectic forms for the first nontrivial examples explicitly and perform the consistency checks. We formulate the corresponding quantum problem and discuss some of its properties and prospects.
Keywords: matrix models, complex geometry, integrable systems.
@article{TMF_2006_146_1_a0,
     author = {A. V. Marshakov},
     title = {Matrix {Model} and {Stationary} {Problem} in the {Toda} {Chain}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--16},
     year = {2006},
     volume = {146},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a0/}
}
TY  - JOUR
AU  - A. V. Marshakov
TI  - Matrix Model and Stationary Problem in the Toda Chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 3
EP  - 16
VL  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a0/
LA  - ru
ID  - TMF_2006_146_1_a0
ER  - 
%0 Journal Article
%A A. V. Marshakov
%T Matrix Model and Stationary Problem in the Toda Chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 3-16
%V 146
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a0/
%G ru
%F TMF_2006_146_1_a0
A. V. Marshakov. Matrix Model and Stationary Problem in the Toda Chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a0/

[1] A. A. Migdal, Phys. Rep., 102 (1983), 199 | DOI | MR

[2] F. David, Phys. Lett. B, 302 (1993), 403–410 ; ; G. Bonnet, F. David, B. Eynard, J. Phys. A, 33 (2000), 6739–6768 ; hep-th/9212106cond-mat/0003324 | DOI | MR | DOI | MR | Zbl

[3] F. Cachazo, K. Intriligator, C. Vafa, Nucl. Phys. B, 603 (2001), 3–41 ; hep-th/0103067 ; F. Cachazo, C. Vafa, $N=1$ and $N=2$ geometry from fluxes, hep-th/0206017 | DOI | MR | Zbl

[4] R. Dijkgraaf, C. Vafa, Matrix models, topological strings, and supersymmetric gauge theories, hep-th/0206255 | MR

[5] I. Krichever, Commun. Pure Appl. Math., 47 (1992), 437 ; hep-th/9205110 | DOI | MR

[6] A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Scientific, Singapore, 1999 | MR | Zbl

[7] Integrability: The Seiberg–Witten and Whitham Equations, eds. H. W. Braden, I. M. Krichever, Gordon and Breach, Amsterdam, 2000 | MR | Zbl

[8] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Nucl. Phys. B, 357 (1991), 565 | DOI | MR

[9] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355 (1995), 466–477 ; hep-th/9505035 | DOI | MR

[10] O. I. Bogoyavlenskii, S. P. Novikov, Funkts. analiz i ego prilozh., 10:1 (1976), 9 ; В. Е. Захаров, С. В. Манаков, С. П. Новиков, П. П. Питаевский, Теория солитонов: метод обратной задачи, Наука, М., 1980 ; Б. А. Дубровин, И. М. Кричевер, С. П. Новиков, “Интегрируемые системы”, Итоги науки и техники. Сер. Современные проблемы математики. Фундаментальные направления, 4, ред. Р. В. Гамкрелидзе, В. И. Арнольд, С. П. Новиков, ВИНИТИ, М., 1985, 179 | MR | Zbl | MR | Zbl | MR

[11] I. M. Krichever, D. H. Phong, J. Diff. Geom., 45 (1997), 349 ; ; Symplectic forms in the theory of solitons, ; A. Marshakov, “From nonperturbative SUSY gauge theories to integrable systems”, Proc. 10th Int. Conf. “Problems of Quantum Field Theory” (Dubna, 1996) ; hep-th/9604199hep-th/9708170hep-th/9607159 | DOI | MR | Zbl | MR

[12] A. Marshakov, Mod. Phys. Lett. A, 11 (1996), 1169 ; ; A. Gorsky, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 380 (1996), 75 ; hep-th/9602005hep-th/9603140 | DOI | MR | Zbl | DOI | MR

[13] T. J. Hollowood, JHEP, 0310 (2003), 051 ; ; R. Boels, J. de Boer, R. Duivenvoorden, J. Wijnhout, JHEP, 0403 (2004), 010 ; ; H. Itoyama, H. Kanno, Nucl. Phys. B, 686 (2004), 155 ; hep-th/0305023hep-th/0305189hep-th/0312306 | DOI | MR | DOI | MR | DOI | MR | Zbl

[14] N. A. Nekrasov, Adv. Theor. Math. Phys., 7 (2004), 831 ; ; Z theory, ; A. S. Losev, A. Marshakov, N. A. Nekrasov, Small instantons, little strings and free fermions, ; N. Nekrasov, A. Okounkov, Seiberg–Witten theory and random partitions, ; A. Braverman, Instanton counting via affine Lie algebras. I: Equivariant J-functions of (affine) flag manifolds and Whittaker vectors, math.AG/0401409 ; A. Braverman, P. Etingof, Instanton counting via affine Lie algebras II: from Whittaker vectors to the Seiberg–Witten prepotential, hep-th/0206161hep-th/0412021hep-th/0302191hep-th/0306238math.AG/0409441 | DOI | MR | MR | MR | MR | Zbl | MR