@article{TMF_2006_146_1_a0,
author = {A. V. Marshakov},
title = {Matrix {Model} and {Stationary} {Problem} in the {Toda} {Chain}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--16},
year = {2006},
volume = {146},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a0/}
}
A. V. Marshakov. Matrix Model and Stationary Problem in the Toda Chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TMF_2006_146_1_a0/
[1] A. A. Migdal, Phys. Rep., 102 (1983), 199 | DOI | MR
[2] F. David, Phys. Lett. B, 302 (1993), 403–410 ; ; G. Bonnet, F. David, B. Eynard, J. Phys. A, 33 (2000), 6739–6768 ; hep-th/9212106cond-mat/0003324 | DOI | MR | DOI | MR | Zbl
[3] F. Cachazo, K. Intriligator, C. Vafa, Nucl. Phys. B, 603 (2001), 3–41 ; hep-th/0103067 ; F. Cachazo, C. Vafa, $N=1$ and $N=2$ geometry from fluxes, hep-th/0206017 | DOI | MR | Zbl
[4] R. Dijkgraaf, C. Vafa, Matrix models, topological strings, and supersymmetric gauge theories, hep-th/0206255 | MR
[5] I. Krichever, Commun. Pure Appl. Math., 47 (1992), 437 ; hep-th/9205110 | DOI | MR
[6] A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Scientific, Singapore, 1999 | MR | Zbl
[7] Integrability: The Seiberg–Witten and Whitham Equations, eds. H. W. Braden, I. M. Krichever, Gordon and Breach, Amsterdam, 2000 | MR | Zbl
[8] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Nucl. Phys. B, 357 (1991), 565 | DOI | MR
[9] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355 (1995), 466–477 ; hep-th/9505035 | DOI | MR
[10] O. I. Bogoyavlenskii, S. P. Novikov, Funkts. analiz i ego prilozh., 10:1 (1976), 9 ; В. Е. Захаров, С. В. Манаков, С. П. Новиков, П. П. Питаевский, Теория солитонов: метод обратной задачи, Наука, М., 1980 ; Б. А. Дубровин, И. М. Кричевер, С. П. Новиков, “Интегрируемые системы”, Итоги науки и техники. Сер. Современные проблемы математики. Фундаментальные направления, 4, ред. Р. В. Гамкрелидзе, В. И. Арнольд, С. П. Новиков, ВИНИТИ, М., 1985, 179 | MR | Zbl | MR | Zbl | MR
[11] I. M. Krichever, D. H. Phong, J. Diff. Geom., 45 (1997), 349 ; ; Symplectic forms in the theory of solitons, ; A. Marshakov, “From nonperturbative SUSY gauge theories to integrable systems”, Proc. 10th Int. Conf. “Problems of Quantum Field Theory” (Dubna, 1996) ; hep-th/9604199hep-th/9708170hep-th/9607159 | DOI | MR | Zbl | MR
[12] A. Marshakov, Mod. Phys. Lett. A, 11 (1996), 1169 ; ; A. Gorsky, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 380 (1996), 75 ; hep-th/9602005hep-th/9603140 | DOI | MR | Zbl | DOI | MR
[13] T. J. Hollowood, JHEP, 0310 (2003), 051 ; ; R. Boels, J. de Boer, R. Duivenvoorden, J. Wijnhout, JHEP, 0403 (2004), 010 ; ; H. Itoyama, H. Kanno, Nucl. Phys. B, 686 (2004), 155 ; hep-th/0305023hep-th/0305189hep-th/0312306 | DOI | MR | DOI | MR | DOI | MR | Zbl
[14] N. A. Nekrasov, Adv. Theor. Math. Phys., 7 (2004), 831 ; ; Z theory, ; A. S. Losev, A. Marshakov, N. A. Nekrasov, Small instantons, little strings and free fermions, ; N. Nekrasov, A. Okounkov, Seiberg–Witten theory and random partitions, ; A. Braverman, Instanton counting via affine Lie algebras. I: Equivariant J-functions of (affine) flag manifolds and Whittaker vectors, math.AG/0401409 ; A. Braverman, P. Etingof, Instanton counting via affine Lie algebras II: from Whittaker vectors to the Seiberg–Witten prepotential, hep-th/0206161hep-th/0412021hep-th/0302191hep-th/0306238math.AG/0409441 | DOI | MR | MR | MR | MR | Zbl | MR