Polarization Tomography of Quantum Radiation: Theoretical Aspects and Operator Approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 3, pp. 344-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present theoretical foundations for the quantum tomography of polarization states of light fields as a method for measuring their polarization density operator $\widehat R$, which characterizes only the polarization degrees of freedom of the radiation. We mainly attend to the method in which the tomographic observables (the $\widehat R$ “measurement instruments”) are polarizable in nature. We show that the quantum nature of this method can be adequately expressed using the quasispectral tomographic decompositions of $\widehat R$ in special operator bases, which are finite sums of partially orthogonal projection operators determining the probability distributions of tomographic observables as the decomposition coefficients. We obtain the matrix versions of such “tomographic” representations of $\widehat R$, in particular, by projecting them on semiclassical operator bases determining the polarization quasiprobability functions. We briefly discuss the information aspects of the schemes considered in the paper.
Keywords: quantum tomography, polarization density operator of radiation, measurement, quasispectral decomposition of operators, partially orthogonal projection operators, probability distributions, quasiprobability functions.
Mots-clés : tomographic observables
@article{TMF_2005_145_3_a2,
     author = {V. P. Karassiov},
     title = {Polarization {Tomography} of {Quantum} {Radiation:} {Theoretical} {Aspects} and {Operator} {Approach}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--357},
     year = {2005},
     volume = {145},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_145_3_a2/}
}
TY  - JOUR
AU  - V. P. Karassiov
TI  - Polarization Tomography of Quantum Radiation: Theoretical Aspects and Operator Approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 344
EP  - 357
VL  - 145
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_145_3_a2/
LA  - ru
ID  - TMF_2005_145_3_a2
ER  - 
%0 Journal Article
%A V. P. Karassiov
%T Polarization Tomography of Quantum Radiation: Theoretical Aspects and Operator Approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 344-357
%V 145
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_145_3_a2/
%G ru
%F TMF_2005_145_3_a2
V. P. Karassiov. Polarization Tomography of Quantum Radiation: Theoretical Aspects and Operator Approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 3, pp. 344-357. http://geodesic.mathdoc.fr/item/TMF_2005_145_3_a2/

[1] J. Bertrand, P. Bertrand, Found. Phys., 17 (1987), 397 | DOI | MR

[2] K. Vogel, H. Risken, Phys. Rev. A, 40 (1989), 2847 | DOI

[3] D. T. Smithey, M. Beck, M. G. Raymer, A. Faridani, Phys. Rev. Lett., 70 (1993), 1244 | DOI

[4] H. Kühn, D.-G. Welsh, W. Vogel, Phys. Rev. A, 51 (1995), 4240 | DOI

[5] U. Leonhardt, H. Paul, G. M. D'Ariano, Phys. Rev. A, 52 (1995), 4899 | DOI

[6] K. Banaszek, K. Wodkiewicz, Phys. Rev. Lett., 76 (1996), 4344 | DOI

[7] V. Buzek, G. Adam, G. Drobny, Ann. Phys., 245 (1996), 37 | DOI | MR | Zbl

[8] A. Wuensche, J. Mod. Optics, 44 (1997), 2293 | DOI | MR | Zbl

[9] V. P. Karasev, A. V. Masalov, ZhETF, 126 (2004), 63

[10] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[11] A. S. Kholevo, Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, Nauka, M., 1980 | MR | Zbl

[12] B. B. Kadomtsev, UFN, 164 (1994), 449 ; С. Я. Килин, УФН, 169 (1999), 507 | DOI | DOI

[13] D. Boumeister, A. Ekert, A. Tsailinger, Fizika kvantovoi informatsii, Postmarket, M., 2002

[14] M. B. Menskii, UFN, 170 (2000), 631 | DOI

[15] I. V. Volovich, Quantum information in space and time, ; I. V. Volovich, Quantum Computers, Teleportation, Cryptography, Lectures, Steklov Mathematical Institute, M., 2001–2002 E-print quant-ph/0108073

[16] B. A. Grishanin, V. N. Zadkov, Radiotekhn. i elektron., 47 (2002), 1029

[17] K. A. Valiev, UFN, 175 (2005), 3 | DOI | MR

[18] R. L. Stratonovich, ZhETF, 31 (1956), 1012 | Zbl

[19] V. I. Tatarskii, UFN, 139 (1983), 587 ; M. Hillery, R. F. O'Connell, M. O. Scully, E. P. Wigner, Phys. Rep., 106 (1984), 121 | DOI | MR | DOI | MR

[20] K. Banaszek, G. M. D'Ariano, M. G. A. Paris, M. F. Sacchi, Phys. Rev. A, 61 (1999), 010304(R) | DOI

[21] A. B. Klimov, O. V. Man'ko, V. I. Man'ko, Yu. F. Smirnov, V. N. Tolstoy, J. Phys. A, 35 (2002), 6101 | DOI | MR | Zbl

[22] V. P. Karasev, Kr. soobsch. fiz., 1999, no. 9, 34

[23] M. G. Raymer, A. C. Funk, D. F. McAlister, “Measuring the quantum polarization state of light”, Quantum Communications, Computing and Measurement, V. 2, eds. P. Kumar et al., Kluwer, New York, 2000, 147

[24] P. A. Bushev, V. P. Karasev, A. V. Masalov, A. A. Putilin, Opt. i spektr., 91 (2001), 558

[25] V. P. Karassiov, J. Phys. A, 26 (1993), 4345 ; J. Rus. Laser Res., 15 (1994), 391 ; 21 (2000), 370 | DOI | MR | DOI | DOI

[26] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev., 47 (1935), 777 | DOI | Zbl

[27] V. P. Karassiov, A. V. Masalov, Las. Phys., 12 (2002), 948

[28] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975

[29] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[30] G. S. Agarwal, Phys. Rev. A, 57 (1998), 671 | DOI

[31] Yu. V. Prokhorov, Yu. A. Rozanov, Teoriya veroyatnostei. Osnovnye ponyatiya. Predelnye teoremy, Nauka, M., 1973 | MR | Zbl