Cohomology of the Poisson Superalgebra on Spaces of Superdimension $(2,n_-)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 3, pp. 291-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under certain assumptions about the continuity of cochains, we study the cohomology spaces of a Poisson superalgebra realized on the space of smooth Grassmann-valued functions with compact support in $\mathbb{R}^2$. We find the zeroth, first, and second cohomology spaces in the adjoint representation in the case of a constant nondegenerate Poisson superbracket.
Keywords: Grassmann algebra, cohomology, deformation, $*$-commutator
Mots-clés : Poisson superalgebra, quantization.
@article{TMF_2005_145_3_a0,
     author = {S. E. Konstein and I. V. Tyutin},
     title = {Cohomology of the {Poisson} {Superalgebra} on {Spaces} of {Superdimension} $(2,n_-)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--320},
     year = {2005},
     volume = {145},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_145_3_a0/}
}
TY  - JOUR
AU  - S. E. Konstein
AU  - I. V. Tyutin
TI  - Cohomology of the Poisson Superalgebra on Spaces of Superdimension $(2,n_-)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 291
EP  - 320
VL  - 145
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_145_3_a0/
LA  - ru
ID  - TMF_2005_145_3_a0
ER  - 
%0 Journal Article
%A S. E. Konstein
%A I. V. Tyutin
%T Cohomology of the Poisson Superalgebra on Spaces of Superdimension $(2,n_-)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 291-320
%V 145
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_145_3_a0/
%G ru
%F TMF_2005_145_3_a0
S. E. Konstein; I. V. Tyutin. Cohomology of the Poisson Superalgebra on Spaces of Superdimension $(2,n_-)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 3, pp. 291-320. http://geodesic.mathdoc.fr/item/TMF_2005_145_3_a0/

[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerovich, D. Sternheimer, Ann. Phys., 111 (1978), 61 ; 111 ; М. Карасёв, В. Маслов, Нелинейные скобки Пуассона. Геометрия и квантование, Наука, М., 1991 ; B. Fedosov, Deformation Quantization and Index Theory, Math. Topics, 9, Akademie, Berlin, 1996 ; M. Kontsevich, Lett. Math. Phys., 66 (2003), 157 ; E-print q-alg/9709040 | DOI | MR | Zbl | MR | MR | MR | DOI | MR | Zbl

[2] V. V. Zharinov, TMF, 136 (2003), 179 | DOI | MR | Zbl

[3] D. A. Leites, I. M. Schepochkina, TMF, 126 (2001), 339 | DOI | MR | Zbl

[4] I. V. Tyutin, TMF, 127 (2001), 253 ; 128, 515 | DOI | MR | Zbl | MR | Zbl

[5] S. E. Konshtein, A. G. Smirnov, I. V. Tyutin, TMF, 143 (2005), 163 ; E-print hep-th/0312109 | DOI | MR

[6] S. E. Konstein, I. V. Tyutin, Deformations of the central extension of the Poisson superalgebra, E-print hep-th/0501027 | MR

[7] M. Scheunert, R. B. Zhang, J. Math. Phys., 39 (1998), 5024 ; E-print q-alg/9701037 | DOI | MR | Zbl