Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 2, pp. 212-220
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the two-particle Schrodinger operator $H(k)$ on the one-dimensional lattice $\mathbb Z$. The operator $H(\pi)$ has infinitely many eigenvalues $z_m(\pi)=\hat v(m)$, $m\in\mathbb Z_+$. If the potential $\hat v$ increases on $\mathbb Z_+$, then only the eigenvalue $z_0(\pi)$ is simple, and all the other eigenvalues are of multiplicity two. We prove that for each of the doubly degenerate eigenvalues $z_m(\pi)$, $m\in\mathbb N$, the operator $H(\pi)$ splits into two nondegenerate eigenvalues $z_m^-(k)$ and $z_m^+(k)$ under small variations of $k\in(\pi-\delta,\pi)$. We show that $z_m^-(k)$ and obtain an estimate for $z_m^+(k)-z_m^-(k)$ for при $k\in(\pi-\delta,\pi)$. The eigenvalues $z_0(k)$ and $z_1^-(k)$ increase on$[\pi-\delta,\pi]$. If $(\Delta\hat v)(m)>0$, then $z_m^\pm(k)$ for $m\geqslant 2$ also has this property.
Keywords:
Hamiltonian, Schrodinger operator, total quasimomentum, eigenvalue, perturbation theory.
@article{TMF_2005_145_2_a6,
author = {Zh. I. Abdullaev},
title = {Perturbation {Theory} for the {Two-Particle} {Schrodinger} {Operator} on a {One-Dimensional} {Lattice}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {212--220},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a6/}
}
TY - JOUR AU - Zh. I. Abdullaev TI - Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 212 EP - 220 VL - 145 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a6/ LA - ru ID - TMF_2005_145_2_a6 ER -
Zh. I. Abdullaev. Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 2, pp. 212-220. http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a6/