Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 2, pp. 212-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the two-particle Schrodinger operator $H(k)$ on the one-dimensional lattice $\mathbb Z$. The operator $H(\pi)$ has infinitely many eigenvalues $z_m(\pi)=\hat v(m)$, $m\in\mathbb Z_+$. If the potential $\hat v$ increases on $\mathbb Z_+$, then only the eigenvalue $z_0(\pi)$ is simple, and all the other eigenvalues are of multiplicity two. We prove that for each of the doubly degenerate eigenvalues $z_m(\pi)$, $m\in\mathbb N$, the operator $H(\pi)$ splits into two nondegenerate eigenvalues $z_m^-(k)$ and $z_m^+(k)$ under small variations of $k\in(\pi-\delta,\pi)$. We show that $z_m^-(k) and obtain an estimate for $z_m^+(k)-z_m^-(k)$ for при $k\in(\pi-\delta,\pi)$. The eigenvalues $z_0(k)$ and $z_1^-(k)$ increase on$[\pi-\delta,\pi]$. If $(\Delta\hat v)(m)>0$, then $z_m^\pm(k)$ for $m\geqslant 2$ also has this property.
Keywords: Hamiltonian, Schrodinger operator, total quasimomentum, eigenvalue, perturbation theory.
@article{TMF_2005_145_2_a6,
     author = {Zh. I. Abdullaev},
     title = {Perturbation {Theory} for the {Two-Particle} {Schrodinger} {Operator} on a {One-Dimensional} {Lattice}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {212--220},
     year = {2005},
     volume = {145},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a6/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
TI  - Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 212
EP  - 220
VL  - 145
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a6/
LA  - ru
ID  - TMF_2005_145_2_a6
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%T Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 212-220
%V 145
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a6/
%G ru
%F TMF_2005_145_2_a6
Zh. I. Abdullaev. Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 2, pp. 212-220. http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a6/

[1] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[3] S. N. Lakaev, TMF, 44:3 (1980), 381–386 ; J. Rauch, J. Funct. Anal., 35 (1980), 304–315 ; B. Simon, Ann. Phys., 97 (1976), 279–288 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[4] Sh. S. Mamatov, R. A. Minlos, TMF, 79:2 (1989), 163–179 | MR

[5] R. A. Minlos, A. I. Mogilner, “Some problems conserning spectra of lattice models”, Schrödinger operators: Standard and Nonstandard, Proc. of the Conf. (Dubna, Russia, 6–10 September, 1988), eds. P. Exner, P. Seba, World Scientific, Singapore, 1989, 243–257 | MR

[6] Zh. I. Abdullaev, I. A. Ikromov, S. N. Lakaev, TMF, 103:1 (1995), 54–62 | MR

[7] P. A. Faria da Viega, L. Ioriatti, M. O'Carrol, Phys. Rev. E, 66 (2002), 016130 ; D. C. Mattis, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR | DOI | MR