Constructively Factoring Linear Partial Differential Operators in Two Variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 2, pp. 165-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study conditions under which a partial differential operator of arbitrary order $n$ in two variables or an ordinary linear differential operator admits a factorization with a first-order factor on the left.The process of factoring consists of recursively solving systems of linear equations subject to certain differential compatibility conditions.In the general case of partial differential operators, it is not necessary to solve a differential equation. In special degenerate cases, such as an ordinary differential operator, the problem eventually reduces to solving some Riccati equation(s). We give the factorization conditions explicitly for the second and third orders and in outline form for higher orders.
Keywords: differential operators, factorization of differential operators, algebraic factorization.
@article{TMF_2005_145_2_a2,
     author = {R. Beals and E. A. Kartashova},
     title = {Constructively {Factoring} {Linear} {Partial} {Differential} {Operators} in {Two} {Variables}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {165--180},
     year = {2005},
     volume = {145},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a2/}
}
TY  - JOUR
AU  - R. Beals
AU  - E. A. Kartashova
TI  - Constructively Factoring Linear Partial Differential Operators in Two Variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 165
EP  - 180
VL  - 145
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a2/
LA  - ru
ID  - TMF_2005_145_2_a2
ER  - 
%0 Journal Article
%A R. Beals
%A E. A. Kartashova
%T Constructively Factoring Linear Partial Differential Operators in Two Variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 165-180
%V 145
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a2/
%G ru
%F TMF_2005_145_2_a2
R. Beals; E. A. Kartashova. Constructively Factoring Linear Partial Differential Operators in Two Variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 2, pp. 165-180. http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a2/

[1] J. Apel, J. Symb. Comp., 25 (1998), 683–704 ; П. Олвер, Приложения групп Ли к дифференциальным уравнениям, Мир, М., 1989 ; J. F. Pommaret, Partial differential equations and Lie pseudogroups, Gordon and Breach, N.Y., 1978 | DOI | MR | Zbl | MR | Zbl | MR | Zbl

[2] M. Bronstein, “An improved algorithm for factoring linear ordinary differential operators”, Proc. of the Int. Symp. on Symbolic and Algebraic Computation (ISSAC'94), eds. J. von zur Gathen, M. Giesbrecht, ACM Press, Baltimore, MD, 1994, 336–340 ; F. Schwarz, “A factorization algorithm for linear ordinary differential equations”, Proc. of the Int. Symp. on Symbolic and Algebraic Computation (ISSAC'89), ed. G. H. Gonnet, ACM Press, N.Y., 1989, 17–25; S. P. Tsarev, “An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator”, Proc. of the Int. Symp. on Symbolic and Algebraic Computation (ISSAC'96), ed. Y. N. Lakshman, ACM Press, N.Y., 1996, 226–231 | DOI | Zbl | Zbl

[3] E. Beke, Math. Ann., 45 (1894), 278–300 | DOI | MR

[4] A. Loewy, Math. Ann., 62 (1906), 89–117 ; 56 (1903), 549–584 | DOI | MR | Zbl | DOI | MR | Zbl

[5] E. Landau, J. für Math., 124 (1901), 115–120 | Zbl

[6] D. Grigoriev, F. Schwarz, Computing, 73 (2004), 179–197 | MR | Zbl

[7] S. P. Tsarev, Factorization of linear partial differential operators and Darboux integrability of nonlinear PDEs, Poster at ISSAC'98, 1998; E-print cs.SC/9811002

[8] S. P. Tsarev, “Factorization of overdetermined systems of linear partial differential equations with finite dimensional solution space”, Proc. 4th Int. Workshop on Computer Algebra Scient. Comput. (CASC-2001), eds. V. Ganzha, E. Mayr, V. Vorozhtsov, Springer, Berlin, 2001, 529–539 ; Z. Li, F. Schwarz, S. P. Tsarev, J. Symb. Comput., 36 (2003), 443–471 | DOI | MR | Zbl | DOI | MR | Zbl