Spectral Analysis of a Class of Non-Self-Adjoint Differential Operator Pencils with a Generalized Function
Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 1, pp. 102-107
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the spectrum and solve the inverse problem for a pencil of non-self-adjoint second-order differential operators with a generalized function in the space $L_2(-\infty,+\infty)$.
Keywords:
Schrodinger equation, Dirac delta function, spectral singularities, inverse problem.
Mots-clés : Jost solution
Mots-clés : Jost solution
@article{TMF_2005_145_1_a4,
author = {R. F. \`Efendiev},
title = {Spectral {Analysis} of a {Class} of {Non-Self-Adjoint} {Differential} {Operator} {Pencils} with a {Generalized} {Function}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {102--107},
year = {2005},
volume = {145},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_145_1_a4/}
}
TY - JOUR AU - R. F. Èfendiev TI - Spectral Analysis of a Class of Non-Self-Adjoint Differential Operator Pencils with a Generalized Function JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 102 EP - 107 VL - 145 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2005_145_1_a4/ LA - ru ID - TMF_2005_145_1_a4 ER -
R. F. Èfendiev. Spectral Analysis of a Class of Non-Self-Adjoint Differential Operator Pencils with a Generalized Function. Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 1, pp. 102-107. http://geodesic.mathdoc.fr/item/TMF_2005_145_1_a4/
[1] S. Albeverio, F. Gastezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR
[2] P. C. Sabatier, J. Math. Phys., 9:8 (1968), 1241–1258 | DOI
[3] R. I. Kadiev (ml.), Izv. vuzov. Matematika, 1998, no. 7, 26–31 | MR
[4] T. Aktosun, Inverse Problems, 2004, no. 20, 859–876 | DOI | MR | Zbl
[5] R. F. Efendiev, Dokl. NAN Azerb., 2001, no. 4–6, 15–20 | MR
[6] R. F. Efendiev, Matem. fizika, analiz, geometriya, 11:1 (2004), 114–121 | MR | Zbl
[7] P. N. Knyazev, Izv. vuzov. Matematika, 1959, no. 2, 94–100 | MR | Zbl