Diverse $N=(4,4)$ Twisted Multiplets in the $N=(2,2)$ Superspace
Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 1, pp. 66-86
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe four different types of $N=(4,4)$ twisted supermultiplets in the two-dimensional $N=(2,2)$ superspace $\mathbb{R}^{(1,1|2,2)}$. All these multiplets are represented by a pair of chiral and twisted chiral superfields and differ in the transformation properties under an extra hidden$ N=(2,2)$ supersymmetry. The sigma-model $N=(2,2)$ superfield Lagrangians for each type of the $N=(4,4)$ twisted supermultiplet are real functions subjected to some differential constraints implied by the hidden supersymmetry. We prove that the general sigma-model action including all types of $N=(4,4)$ twisted multiplets and invariant under the $N=(4,4)$ supersymmetry reduces to a sum of sigma-model actions for separate types. An interaction between the multiplets of different sorts is possible only through the appropriate mass terms and only for those multiplets that belong to the same “self-dual” pair.
Keywords:
supersymmetric sigma models, twisted supermultiplets, harmonic superspace.
@article{TMF_2005_145_1_a2,
author = {E. A. Ivanov and A. O. Sutulin},
title = {Diverse $N=(4,4)$ {Twisted} {Multiplets} in the $N=(2,2)$ {Superspace}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {66--86},
publisher = {mathdoc},
volume = {145},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_145_1_a2/}
}
TY - JOUR AU - E. A. Ivanov AU - A. O. Sutulin TI - Diverse $N=(4,4)$ Twisted Multiplets in the $N=(2,2)$ Superspace JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 66 EP - 86 VL - 145 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2005_145_1_a2/ LA - ru ID - TMF_2005_145_1_a2 ER -
E. A. Ivanov; A. O. Sutulin. Diverse $N=(4,4)$ Twisted Multiplets in the $N=(2,2)$ Superspace. Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 1, pp. 66-86. http://geodesic.mathdoc.fr/item/TMF_2005_145_1_a2/