dS–AdS Structures in Noncommutative Minkowski Spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 3, pp. 513-543 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a family of noncommutative four-dimensional Minkowski spaces with the signature $(1,3)$ and two types of spaces with the signature $(2,2)$. The Minkowski spaces are defined by the common reflection equation and differ in anti-involutions. There exist two Casimir elements, and. xing one of them leads to the noncommutative “homogeneous” spaces $H_3$, $dS_3$, $AdS_3$, and light cones. We present a semiclassical description of the Minkowski spaces. There are three compatible Poisson structures: quadratic, linear, and canonical. Quantizing the first leads to the Minkowski spaces. We introduce horospheric generators of the Minkowski spaces, and they lead to the horospheric description of $H_3$, $dS_3$, and $AdS_3$. We construct irreducible representations of the Minkowski spaces $H_3$ and $dS_3$. We find eigenfunctions of the Klein–Gordon equation in terms of the horospheric generators of the Minkowski spaces, and they lead to eigenfunctions on $H_3$, $dS_3$, $AdS_3$, and light cones.
Keywords: noncommutative geometry, Yang–Baxter equation, reflection equation, harmonic analysis on noncommutative spaces.
@article{TMF_2005_144_3_a5,
     author = {M. A. Olshanetsky and V.-B. K. Rogov},
     title = {dS{\textendash}AdS {Structures} in {Noncommutative} {Minkowski} {Spaces}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {513--543},
     year = {2005},
     volume = {144},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a5/}
}
TY  - JOUR
AU  - M. A. Olshanetsky
AU  - V.-B. K. Rogov
TI  - dS–AdS Structures in Noncommutative Minkowski Spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 513
EP  - 543
VL  - 144
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a5/
LA  - ru
ID  - TMF_2005_144_3_a5
ER  - 
%0 Journal Article
%A M. A. Olshanetsky
%A V.-B. K. Rogov
%T dS–AdS Structures in Noncommutative Minkowski Spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 513-543
%V 144
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a5/
%G ru
%F TMF_2005_144_3_a5
M. A. Olshanetsky; V.-B. K. Rogov. dS–AdS Structures in Noncommutative Minkowski Spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 3, pp. 513-543. http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a5/

[1] M. R. Douglas, N. A. Nekrasov, Rev. Mod. Phys., 73 (2001), 977 ; ; R. J. Szabo, Phys. Rep., 378 (2003), 207 ; ; I. Aref'eva, D. M. Belov, A. A. Guryavets, A. S. Koshelev, P. B. Medvedev, Noncommutative field theories and (super)string field theories, E-print hep-th/0106048E-print hep-th/0109162E-print hep-th/0111208 | DOI | MR | Zbl | DOI | MR | Zbl | MR

[2] A. Jevicki, S. Ramgoolam, JHEP, 9904 (1999), 032 ; ; P. Pouliot, Class. Quant. Grav., 21 (2004), 145 ; ; A. Guijosa, D. Lowe, Phys. Rev. D, 69 (2004), 106008 ; ; D. Lowe, Phys. Rev. D, 70 (2004), 104002 ; E-print hep-th/9902059E-print hep-th/0306261E-print hep-th/0312282E-print hep-th/0407188 | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR

[3] J. Lukierski, H. Ruegg, A. Nowicki, V. N. Tolstoi, Phys. Lett. B, 264 (1991), 331 ; U. Carow-Watamura, M. Schlieker, M. Scholl, S. Watamura, Z. Phys. C, 48 (1990), 159 | DOI | MR | DOI | MR

[4] V. K. Dobrev, Phys. Lett. B, 341 (1994), 133 ; S. Zakrzewski, Poisson structures on the Poincare group, E-print q-alg/9602001 | DOI | MR | Zbl | MR

[5] J. A. de Azcarraga, F. Rodenas, J. Phys. A, 29 (1996), 1215 ; E-print q-alg/9510011 | DOI | MR | Zbl

[6] J. A. de Azcarraga, P. P. Kulish, F. Rodenas, Phys. Lett. B, 351 (1995), 123 ; E-print hep-th/9411121 | DOI | MR

[7] P. P. Kulish, Algebra i analiz, 6 (1994), 195 ; E-print hep-th/9312139 | MR | Zbl

[8] P. Kulish, N. Reshetikhin, Zapiski nauch. semin. LOMI, 101, 1981, 101 ; Е. Склянин, УМН, 40 (1985), 214 | MR | MR

[9] M. A. Olshanetskii, V.-B. K. Rogov, TMF, 130 (2002), 355 ; E-print math.QA/0110182 | DOI | MR | Zbl

[10] L. L. Vaksman, L. I. Korogodsky, Harmonic analysis on quantum hyperboloids, Preprint ITPh-90-27P, Kiev, 1990 | Zbl

[11] S. Kharchev, D. Lebedev, M. Semenov-Tian-Shansky, Commun. Math. Phys., 225 (2002), 573 ; E-print hep-th/0102180 | DOI | MR | Zbl

[12] Dzh. Gasper, M. Rakhman, Bazisnye gipergeometricheskie ryady, Mir, M., 1993 | MR