Phase Condition for the Grover Algorithm
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 3, pp. 472-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Grover algorithm, we derive the exact formula of the norm of the amplitude in the marked state in a sine-function form and use this formula to derive the necessary and sufficient phase condition условие $\sin\Delta\leq|\beta|$ for this algorithm with arbitrary phase rotations. We show that the condition of identical rotation angles $\theta=\phi$, which is a special case of our condition, is a sufficient but not necessary phase condition.
Keywords: Grover algorithm, quantum search algorithm
Mots-clés : phase condition.
@article{TMF_2005_144_3_a2,
     author = {D. Li and X. Li and H. Huang},
     title = {Phase {Condition} for the {Grover} {Algorithm}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {472--483},
     year = {2005},
     volume = {144},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a2/}
}
TY  - JOUR
AU  - D. Li
AU  - X. Li
AU  - H. Huang
TI  - Phase Condition for the Grover Algorithm
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 472
EP  - 483
VL  - 144
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a2/
LA  - ru
ID  - TMF_2005_144_3_a2
ER  - 
%0 Journal Article
%A D. Li
%A X. Li
%A H. Huang
%T Phase Condition for the Grover Algorithm
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 472-483
%V 144
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a2/
%G ru
%F TMF_2005_144_3_a2
D. Li; X. Li; H. Huang. Phase Condition for the Grover Algorithm. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 3, pp. 472-483. http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a2/

[1] P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, Proc. of the 35th Annual Symposium on Foundation of Computer Science (Santa Fe, New Mexico, 20–22 November, 1994), IEEE Computer Society Press, Los Alamos, CA, 1994, 124 | DOI | MR

[2] L. K. Grover, Phys. Rev. Lett., 80 (1998), 4329 | DOI

[3] L. K. Grover, Phys. Rev. Lett., 79 (1997), 325 | DOI

[4] M. Boyer, G. Brassard, P. Høyer, A. Tapp, Fortsch. Phys., 46 (1998), 493 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] G. L. Long, Y. S. Li, W. L. Zhang, Li Niu, Phys. Lett. A, 262 (1999), 27 | DOI | MR | Zbl

[6] Dafa Li, Xinxin Li, Phys. Lett. A, 287 (2001), 304 ; E-print quant-ph/0105035 | DOI | MR

[7] P. Høyer, Phys. Rev. A, 62 (2000), 052304 | DOI

[8] G. L. Long, Y. S. Li, W. L. Zhang, C. C. Tu, Phys. Rev. A, 61 (2000), 042305 ; G. L. Long, Phys. Rev. A, 64 (2001), 022307 | DOI | DOI

[9] E. Biham, O. Biham, D. Biron et al., Phys. Rev. A, 63 (2000), 012310 | DOI | MR

[10] Dafa Li, Xinxin Li, H. Huang, Xiangrong Li, Phys. Rev. A, 66 (2002), 044304 | DOI