The Riemann Problem and Matrix-Valued Potentials with a Convergent Baker–Akhiezer Function
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 3, pp. 453-471 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a simple sufficient condition for the solvability of the Riemann factorization problem for matrix-valued functions on a circle. This condition is based on the symmetry principle. As an application, we consider nonlinear evolution equations that can be obtained by a unitary reduction from the zero-curvature equations connecting a linear function of the spectral parameter $z$ and a polynomial of $z$. We consider solutions obtained by dressing the zero solution with a function holomorphic at infinity. We show that all such solutions are meromorphic functions on $\mathbb{C}^2_{xt}$ without singularities on $\mathbb{R}^2_{xt}$. This class of solutions contains all generic finite-gap solutions and many rapidly decreasing solutions but is not exhausted by them. Any solution of this class, regarded as a function of $x$ for almost every fixed $t\in\mathbb{C}$, is a potential with a convergent Baker–Akhiezer function for the corresponding matrix-valued differential operator of the first order.
Keywords: Riemann factorization problem, zero-curvature conditions.
@article{TMF_2005_144_3_a1,
     author = {A. V. Domrin},
     title = {The {Riemann} {Problem} and {Matrix-Valued} {Potentials} with {a~Convergent} {Baker{\textendash}Akhiezer} {Function}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {453--471},
     year = {2005},
     volume = {144},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a1/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - The Riemann Problem and Matrix-Valued Potentials with a Convergent Baker–Akhiezer Function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 453
EP  - 471
VL  - 144
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a1/
LA  - ru
ID  - TMF_2005_144_3_a1
ER  - 
%0 Journal Article
%A A. V. Domrin
%T The Riemann Problem and Matrix-Valued Potentials with a Convergent Baker–Akhiezer Function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 453-471
%V 144
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a1/
%G ru
%F TMF_2005_144_3_a1
A. V. Domrin. The Riemann Problem and Matrix-Valued Potentials with a Convergent Baker–Akhiezer Function. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 3, pp. 453-471. http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a1/

[1] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968 ; Н. П. Векуа, Системы сингулярных интегральных уравнений и некоторые граничные задачи, Наука, М., 1970 | MR | MR | Zbl

[2] Z. Presdorf, Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR

[3] I. Ts. Gokhberg, M. G. Krein, UMN, 13:2 (1958), 3–72 | MR

[4] A. N. Parshin, “K glave X “Problema Rimana v teorii funktsii kompleksnogo peremennogo””, D. Gilbert. Izbrannye trudy, T. II, Faktorial, M., 1998, 535–538

[5] | MR | Zbl

[6] | MR

[7] | MR | Zbl

[8] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy: Teoretiko-gruppovoi podkhod, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003

[9] Yu. L. Rodin, Physica D, 24 (1987), 1–53 ; A. R. Its, Notices Amer. Math. Soc., 50 (2003), 1389–1400 | DOI | MR | Zbl | MR | Zbl

[10] M. Sato, RIMS Kokyuroku, 439 (1981), 30–46 | Zbl

[11] G. B. Segal, G. Wilson, Publ. Math. IHES, 61 (1985), 5–65 ; Э. Прессли, Г. Сигал, Группы петель, Мир, М., 1990 | DOI | Zbl | MR

[12] G. Haak, M. Schmidt, R. Schrader, Rev. Math. Phys., 4 (1992), 451–499 | DOI | MR | Zbl

[13] G. Wilson, “The $\tau$-functions of the $\frak g$AKNS equations”, Integrable Systems, The Verdier Memorial Conference (Luminy, France, July 1–5, 1991), Progr. in Math., 115, eds. O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, Birkhäuser, Basel, 1993, 131–145 | MR | Zbl

[14] D. H. Sattinger, J. S. Szmigielski, Physica D, 64 (1993), 1–34 | DOI | MR | Zbl

[15] C.-L. Terng, K. Uhlenbeck, Commun. Pure Appl. Math., 53 (2000), 1–75 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integriruemye sistemy, I”, Dinamicheskie sistemy–4, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, eds. V. I. Arnold, S. P. Novikov, VINITI, M., 1985, 179–285 | MR

[17] I. M. Krichever, DAN SSSR, 253 (1980), 288–292 | MR | Zbl

[18] I. M. Krichever, “Nelineinye uravneniya i ellipticheskie krivye”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 23, eds. S. P. Novikov, B. A. Dubrovin, R. V. Gamkrelidze, VINITI, M., 1983, 79–136 | MR

[19] I. V. Cherednik, DAN SSSR, 266 (1982), 593–597 | MR | Zbl

[20] S. P. Novikov, Funkts. analiz i ego prilozh., 8:3 (1974), 54–66 | MR | Zbl

[21] A. G. Reiman, M. A. Semenov-Tian-Shansky, Invent. Math., 63 (1981), 423–432 | DOI | MR

[22] F. Gesztesy, W. Karwowski, Z. Zhao, Duke Math. J., 68:1 (1992), 101–150 | DOI | MR | Zbl

[23] A. Degasperis, A. Shabat, TMF, 100:2 (1994), 230–247 | MR | Zbl

[24] V. Yu. Novokshenov, Physica D, 87 (1995), 109–114 | DOI | MR | Zbl

[25]

[26] A. B. Shabat, Diff. uravneniya, 15 (1979), 1824–1834 | MR | Zbl

[27] X. Zhou, “Zakharov–Shabat inverse scattering”, Scattering, eds. R. Pike, P. Sabatier, Academic Press, San Diego, 2002, 1707–1716 | DOI | MR

[28] I. M. Krichever, Funkts. analiz i ego prilozh., 11:1 (1977), 15–31 | MR | Zbl

[29] Yu. Laiterer, “Golomorfnye vektornye rassloeniya i printsip Oka–Grauerta”, Kompleksnyi analiz – mnogie peremennye – 4, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 10, eds. S. G. Gindikin, G. M. Khenkin, VINITI, M., 1986, 75–121 | MR

[30] K. Uhlenbeck, J. Differ. Geom., 30 (1989), 1–50 | DOI | MR | Zbl

[31] E. Pressli, G. Sigal, Gruppy petel, Mir, M., 1990 | MR

[32] F. Musso, A. B. Shabat, TMF, 144:1 (2005), 143–152 ; E-print nlin.SI/0502006 | DOI | MR | Zbl

[33] | MR | Zbl

[34] B. A. Dubrovin, “Matrichnye konechnozonnye operatory”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 23, VINITI, M., 1983, 33–78 | MR

[35] D. Wu, Inverse Problems, 18 (2002), 95–109 | DOI | MR | Zbl

[36] I. McIntosh, Nonlinearity, 7 (1994), 85–108 | DOI | MR | Zbl

[37] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[38] L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore, 1991 | MR | Zbl

[39] B. V. Shabat, Vvedenie v kompleksnyi analiz, T. II, Nauka, M., 1985 | MR