The Riemann Problem and Matrix-Valued Potentials with a~Convergent Baker--Akhiezer Function
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 3, pp. 453-471

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a simple sufficient condition for the solvability of the Riemann factorization problem for matrix-valued functions on a circle. This condition is based on the symmetry principle. As an application, we consider nonlinear evolution equations that can be obtained by a unitary reduction from the zero-curvature equations connecting a linear function of the spectral parameter $z$ and a polynomial of $z$. We consider solutions obtained by dressing the zero solution with a function holomorphic at infinity. We show that all such solutions are meromorphic functions on $\mathbb{C}^2_{xt}$ without singularities on $\mathbb{R}^2_{xt}$. This class of solutions contains all generic finite-gap solutions and many rapidly decreasing solutions but is not exhausted by them. Any solution of this class, regarded as a function of $x$ for almost every fixed $t\in\mathbb{C}$, is a potential with a convergent Baker–Akhiezer function for the corresponding matrix-valued differential operator of the first order.
Keywords: Riemann factorization problem, zero-curvature conditions.
@article{TMF_2005_144_3_a1,
     author = {A. V. Domrin},
     title = {The {Riemann} {Problem} and {Matrix-Valued} {Potentials} with {a~Convergent} {Baker--Akhiezer} {Function}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {453--471},
     publisher = {mathdoc},
     volume = {144},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a1/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - The Riemann Problem and Matrix-Valued Potentials with a~Convergent Baker--Akhiezer Function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 453
EP  - 471
VL  - 144
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a1/
LA  - ru
ID  - TMF_2005_144_3_a1
ER  - 
%0 Journal Article
%A A. V. Domrin
%T The Riemann Problem and Matrix-Valued Potentials with a~Convergent Baker--Akhiezer Function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 453-471
%V 144
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a1/
%G ru
%F TMF_2005_144_3_a1
A. V. Domrin. The Riemann Problem and Matrix-Valued Potentials with a~Convergent Baker--Akhiezer Function. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 3, pp. 453-471. http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a1/