Hochschild Cohomology of the Algebra of Smooth Functions on the Torus
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 3, pp. 435-452
Cet article a éte moissonné depuis la source Math-Net.Ru
We calculate the Hochschild cohomology of the algebra of smooth functions on a finite-dimensional real torus with coefficients in the adjoint representation, generalizing the previously developed technique to the discrete case for this.
Keywords:
Hochschild cohomology, adjoint representation, de Rham complex on an integer lattice.
@article{TMF_2005_144_3_a0,
author = {V. V. Zharinov},
title = {Hochschild {Cohomology} of the {Algebra} of {Smooth} {Functions} on the {Torus}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {435--452},
year = {2005},
volume = {144},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a0/}
}
V. V. Zharinov. Hochschild Cohomology of the Algebra of Smooth Functions on the Torus. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 3, pp. 435-452. http://geodesic.mathdoc.fr/item/TMF_2005_144_3_a0/
[1] V. V. Zharinov, TMF, 140:3 (2004), 355–366 | DOI | MR | Zbl
[2] V. V. Zharinov, TMF, 128:2 (2001), 147–160 | DOI | MR | Zbl
[3] V. V. Zharinov, TMF, 136:2 (2003), 179–196 | DOI | MR | Zbl
[4] J. L. Taylor, Adv. Math., 9 (1972), 137–182 | DOI | MR | Zbl
[5] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR
[6] A. A. Dezin, Mnogomernyi analiz i diskretnye modeli, Nauka, M., 1990 | MR | Zbl
[7] Yu. M. Zinoviev, Commun. Math. Phys., 168 (1995), 227–247 | DOI | MR | Zbl