Bistable Solitons in Single- and Multichannel Waveguides with the Cubic-Quintic Nonlinearity
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 324-335

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider spatial solitons in a channel waveguide or in a periodic array of rectangular potential wells (the Kronig–Penney (KP) model) in the presence of the uniform cubic-quintic (CQ) nonlinearity. Using the variational approximation and numerical methods, we. nd two branches of fundamental (single-humped) soliton solutions. The soliton characteristics, in the form of the integral power $Q$ (or width $w$) vs. the propagation constant $k$, reveal a strong bistability with two different solutions found for a given $k$. Violating the known Vakhitov–Kolokolov criterion, the solution branches with $dQ/dk>0$ and $dQ/dk0$ are simultaneously stable. Various families of higher-order solitons are also found in the KP version of the model: symmetric and antisymmetric double-humped solitons, three-peak solitons with and without the phase shift $\pi$ between the peaks, etc. In a relatively shallow KP lattice, all the solitons belong to the semi-infinite gap beneath the linear band structure of the KP potential, while finite gaps between the bands remain empty (solitons in the finite gaps can be found if the lattice is much deeper). But in contrast to the situation known for the model combining a periodic potential and the self-focusing Kerr nonlinearity, the fundamental solitons fill only a finite zone near the top of the semi-infinite gap, which is a manifestation of the saturable character of the CQ nonlinearity.
Mots-clés : spatial solitons
Keywords: Kronig–Penney model, Vakhitov–Kolokolov criterion.
@article{TMF_2005_144_2_a9,
     author = {B. V. Gisin and R. Driben and B. A. Malomed and I. M. Merhasin},
     title = {Bistable {Solitons} in {Single-} and {Multichannel} {Waveguides} with the {Cubic-Quintic} {Nonlinearity}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {324--335},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a9/}
}
TY  - JOUR
AU  - B. V. Gisin
AU  - R. Driben
AU  - B. A. Malomed
AU  - I. M. Merhasin
TI  - Bistable Solitons in Single- and Multichannel Waveguides with the Cubic-Quintic Nonlinearity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 324
EP  - 335
VL  - 144
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a9/
LA  - ru
ID  - TMF_2005_144_2_a9
ER  - 
%0 Journal Article
%A B. V. Gisin
%A R. Driben
%A B. A. Malomed
%A I. M. Merhasin
%T Bistable Solitons in Single- and Multichannel Waveguides with the Cubic-Quintic Nonlinearity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 324-335
%V 144
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a9/
%G ru
%F TMF_2005_144_2_a9
B. V. Gisin; R. Driben; B. A. Malomed; I. M. Merhasin. Bistable Solitons in Single- and Multichannel Waveguides with the Cubic-Quintic Nonlinearity. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 324-335. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a9/