Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 313-323 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the fundamental properties of models of the multicomponent nonlinear Schrodinger (NLS) type related to symmetric spaces and construct new types of reductions of these systems. We briefly describe the spectral properties of the Lax operators L, which in turn determine the corresponding recursion operator Л and the fundamental properties of the relevant class of nonlinear evolution equations. The results are illustrated by specific examples of NLS-type systems related to the $\bold{DIII}$ symmetric space for the $so(8)$ algebra.
Keywords: multicomponent nonlinear Schrodinger equation, reduction group, symmetric spaces, Hamiltonian properties.
@article{TMF_2005_144_2_a8,
     author = {V. S. Gerdjikov and G. G. Grahovski and N. A. Kostov},
     title = {Multicomponent {NLS-Type} {Equations} on {Symmetric} {Spaces} and {Their} {Reductions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {313--323},
     year = {2005},
     volume = {144},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a8/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - G. G. Grahovski
AU  - N. A. Kostov
TI  - Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 313
EP  - 323
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a8/
LA  - ru
ID  - TMF_2005_144_2_a8
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A G. G. Grahovski
%A N. A. Kostov
%T Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 313-323
%V 144
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a8/
%G ru
%F TMF_2005_144_2_a8
V. S. Gerdjikov; G. G. Grahovski; N. A. Kostov. Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 313-323. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a8/

[1] V. E. Zakharov, A. B. Shabat, ZhETF, 61 (1971), 118

[2] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[4] S. V. Manakov, ZhETF, 67 (1974), 543 ; M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and continous nonlinear Schrodinger systems, London Math. Soc. Lecture Note. Ser., 302, Cambr. Univ. Press, Cambridge, 2003 | MR | MR

[5] A. P. Fordy, P. P. Kulish, Commun. Math. Phys., 89 (1983), 427 | DOI | MR | Zbl

[6] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math., 80, Academic Press, N.Y., 1978 | MR | Zbl

[7] V. S. Gerdjikov, P. P. Kulish, Physica D, 3 (1981), 549 ; V. S. Gerdjikov, Inverse Problems, 2 (1986), 51 | DOI | MR | Zbl | DOI | MR | Zbl

[8] V. S. Gerdzhikov, TMF, 99 (1994), 292 | MR

[9] A. V. Mikhailov, Physica D, 3 (1981), 73 | DOI | Zbl

[10] M. Ablowitz, D. Kaup, A. Newell, H. Seegur, Stud. Appl. Math., 53 (1974), 249 | DOI | MR | Zbl

[11] I. M. Gelfand, L. A. Dikii, UMN, 30 (1975), 67 ; Функц. анализ и его прилож., 11 (1977), 11 | Zbl

[12] V. S. Gerdjikov, Lett. Math. Phys., 6 (1982), 315 | DOI | MR | Zbl

[13] F. Calogero, A. Degasperis, Nuovo Cimento B, 32 (1976), 201 ; 39, 1 | DOI | MR | DOI | MR | Zbl

[14] D. J. Kaup, J. Math. Anal. Appl., 54 (1976), 849 ; V. S. Gerdjikov, E. Kh. Khristov, Bulg. J. Phys., 7 (1980), 28 ; 119 | DOI | MR | Zbl | MR

[15] V. E. Zakharov, A. V. Mikhailov, Commun. Math. Phys., 74 (1980), 21 ; V. Drinfel'd, V. V. Sokolov, J. Sov. Math., 30 (1985), 1975 | DOI | MR | DOI | Zbl

[16] V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, N. A. Kostov, Inverse Problems, 17 (2001), 999 | DOI | MR | Zbl

[17] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, Eur. Phys. J. B, 29 (2002), 243 | DOI | MR

[18] S. Lombardo, A. V. Mikhailov, J. Phys. A, 37 (2004), 7727 ; ; Commun. Math. Phys., 258 (2005), 179 ; E-print nlin.SI/0404013E-print math-ph/0407048 | DOI | MR | Zbl | DOI | MR | Zbl

[19] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “On the multi-component NLS type equations on symmetric spaces. Reductions and scattering data properties”, Contemporary Aspects of Astronomy, Theoretical and Gravitational Physics, Int. Conf. (Sofia, Bulgaria, May 20–22, 2004), unpublished ; “On the multi-component NLS type equations on symmetric spaces. $\mathbb Z_2$-reductions and soliton solutions”, Geometry, Integrability and Quantization, V. VI, eds. I. M. Mladenov, A. C. Hirshfeld, SOFTEX, Sofia, 2005, 203 | MR | MR | Zbl