Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 313-323
Voir la notice de l'article provenant de la source Math-Net.Ru
We analyze the fundamental properties of models of the multicomponent nonlinear Schrodinger (NLS) type related to symmetric spaces and construct new types of reductions of these systems. We briefly describe the spectral properties of the Lax operators L, which in turn determine the corresponding recursion operator Л and the fundamental properties of the relevant class of nonlinear evolution equations. The results are illustrated by specific examples of NLS-type systems related to the $\bold{DIII}$ symmetric space for the $so(8)$ algebra.
Keywords:
multicomponent nonlinear Schrodinger equation, reduction group, symmetric spaces, Hamiltonian properties.
@article{TMF_2005_144_2_a8,
author = {V. S. Gerdjikov and G. G. Grahovski and N. A. Kostov},
title = {Multicomponent {NLS-Type} {Equations} on {Symmetric} {Spaces} and {Their} {Reductions}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {313--323},
publisher = {mathdoc},
volume = {144},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a8/}
}
TY - JOUR AU - V. S. Gerdjikov AU - G. G. Grahovski AU - N. A. Kostov TI - Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 313 EP - 323 VL - 144 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a8/ LA - ru ID - TMF_2005_144_2_a8 ER -
%0 Journal Article %A V. S. Gerdjikov %A G. G. Grahovski %A N. A. Kostov %T Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions %J Teoretičeskaâ i matematičeskaâ fizika %D 2005 %P 313-323 %V 144 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a8/ %G ru %F TMF_2005_144_2_a8
V. S. Gerdjikov; G. G. Grahovski; N. A. Kostov. Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 313-323. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a8/