Modeling Adiabatic $N$-Soliton Interactions and Perturbations
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 302-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze a perturbed version of the complex Toda chain (CTC) in an attempt to describe the adiabatic N-soliton train interactions of the perturbed nonlinear Schrodinger equation. We study perturbations with weak quadratic and periodic external potentials analytically and numerically. The perturbed CTC adequately models the N-soliton train dynamics for both types of potentials. As an application of the developed theory, we consider the dynamics of a train of matter-wave solitons confined in a parabolic trap and an optical lattice.
Keywords: complex Toda chain, adiabatic dynamics
Mots-clés : soliton train, expulsion of a soliton.
@article{TMF_2005_144_2_a7,
     author = {V. S. Gerdjikov and B. B. Baizakov and M. Salerno},
     title = {Modeling {Adiabatic} $N${-Soliton} {Interactions} and {Perturbations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {302--312},
     year = {2005},
     volume = {144},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a7/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - B. B. Baizakov
AU  - M. Salerno
TI  - Modeling Adiabatic $N$-Soliton Interactions and Perturbations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 302
EP  - 312
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a7/
LA  - ru
ID  - TMF_2005_144_2_a7
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A B. B. Baizakov
%A M. Salerno
%T Modeling Adiabatic $N$-Soliton Interactions and Perturbations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 302-312
%V 144
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a7/
%G ru
%F TMF_2005_144_2_a7
V. S. Gerdjikov; B. B. Baizakov; M. Salerno. Modeling Adiabatic $N$-Soliton Interactions and Perturbations. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 302-312. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a7/

[1] V. I. Karpman, V. V. Solov'ev, Physica D, 3 (1981), 487 | DOI | MR | Zbl

[2] V. S. Gerdjikov, D. J. Kaup, I. M. Uzunov, E. G. Evstatiev, Phys. Rev. Lett., 77 (1996), 3943 | DOI

[3] V. S. Gerdjikov, I. M. Uzunov, E. G. Evstatiev, G. L. Diankov, Phys. Rev. E, 55:5 (1997), 6039 | DOI | MR

[4] J. M. Arnold, J. Opt. Soc. Am. A, 15 (1998), 1450 ; Phys. Rev. E, 60 (1999), 979 | DOI | MR | DOI | MR

[5] V. S. Gerdjikov, E. G. Evstatiev, D. J. Kaup, G. L. Diankov, I. M. Uzunov, Phys. Lett. A, 241 (1998), 323 | DOI | MR | Zbl

[6] V. S. Gerdjikov, “On Modelling Adiabatic $N$-soliton Interactions. Effects of perturbations”, Nonlinear Waves: Classical and Quantum Aspects, Proc. NATO Adv. Research Workshop (Estoril, Portugal, 13–17 July 2003), NATO Sci. Ser. II. Math. Phys. Chem., 153, eds. F. Kh. Abdullaev, V. V. Konotop, Kluwer, Dordrecht, 2004, 15 | DOI | MR | Zbl

[7] E. V. Doktorov, N. P. Matsuka, V. M. Rothos, Phys. Rev. E, 69 (2004), 056607 | DOI | MR

[8] Y. Kodama, A. Hasegawa, IEEE J. Quant. Electr., QE-23 (1987), 510 | DOI

[9] V. S. Gerdzhikov, M. I. Ivanov, P. P. Kulish, TMF, 44 (1980), 342 ; В. С. Герджиков, М. И. Иванов, Bulg. J. Phys., 10:1 (1983), 13 ; 2, 130 (In Russian) | MR | Zbl | MR | Zbl | MR | Zbl

[10] V. S. Shchesnovich, E. V. Doktorov, Physica D, 129 (1999), 115 ; J. Math. Phys., 36 (1995), 7009 | DOI | MR | Zbl | DOI | MR | Zbl

[11] V. S. Gerdjikov, E. V. Doktorov, J. Yang, Phys. Rev. E, 64 (2001), 056617 | DOI | MR

[12] V. S. Gerdjikov, I. M. Uzunov, Physica D, 152–153 (2001), 355 | DOI | MR | Zbl

[13] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[14] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[15] V. S. Gerdjikov, “Complex Toda chain – an integrable universal model for adiabatic $N$-soliton interactions”, Nonlinear Physics: Theory and Experiment II, Proc. Int. Workshop (Lecce, Italy, 2002), eds. M. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, World Scientific, River Edge, NJ, 2003, 186 | MR

[16] J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, Phys. Rev. E, 63 (2001), 036612 | DOI

[17] R. Carretero-Gonzalez, K. Promislow, Phys. Rev. A, 66 (2002), 033610 | DOI

[18] S. Wabnitz, Electron. Lett., 29 (1993), 1711 | DOI

[19] I. M. Uzunov, M. Gölles, F. Lederer, J. Opt. Soc. Am. B, 12:6 (1995), 1164 | DOI

[20] S. V. Manakov, ZhETF, 67 (1974), 543 | MR

[21] J. Moser, “Dynamical systems, finitely many mass points on the line under the influence of an exponential potential - an integrable system”, Dynamical Systems, Theory and Applications, Lecture Notes in Phys., 38, ed. J. Moser, Springer, Berlin, 1975, 467 ; V. S. Gerdjikov, E. G. Evstatiev, R. I. Ivanov, J. Phys. A, 31 (1998), 8221 | DOI | MR | DOI | MR | Zbl

[22] K. E. Strecker, G. B. Partridge, A. G. Truscott, R. G. Hulet, Nature, 417 (2002), 150 | DOI