Solutions of a Camassa–Holm Hierarchy in $(2+1)$ Dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 295-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider solutions of a generalization of the Camassa–Holm hierarchy to $(2+1)$ dimensions that include, in particular, the well-known multipeakon solutions of the celebrated Camassa–Holm equation.
Mots-clés : Camassa–Holm equation, hodograph transformations
Keywords: nonisospectral problems.
@article{TMF_2005_144_2_a6,
     author = {P. G. Estevez and J. Prada},
     title = {Solutions of a {Camassa{\textendash}Holm} {Hierarchy} in $(2+1)$ {Dimensions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {295--301},
     year = {2005},
     volume = {144},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a6/}
}
TY  - JOUR
AU  - P. G. Estevez
AU  - J. Prada
TI  - Solutions of a Camassa–Holm Hierarchy in $(2+1)$ Dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 295
EP  - 301
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a6/
LA  - ru
ID  - TMF_2005_144_2_a6
ER  - 
%0 Journal Article
%A P. G. Estevez
%A J. Prada
%T Solutions of a Camassa–Holm Hierarchy in $(2+1)$ Dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 295-301
%V 144
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a6/
%G ru
%F TMF_2005_144_2_a6
P. G. Estevez; J. Prada. Solutions of a Camassa–Holm Hierarchy in $(2+1)$ Dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 295-301. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a6/

[1] R. Camassa, D. D. Holm, Phys. Rev. Lett., 71 (1993), 1661–1666 | DOI | MR

[2] R. Camassa, D. D. Holm, J. M. Hyman, Adv. Appl. Mech., 31 (1994), 1–33 | DOI | Zbl

[3] M. S. Alber, R. Camassa, D. D. Holm, E. Marsden, Lett. Math. Phys., 32 (1994), 137–151 | DOI | MR | Zbl

[4] R. Beals, D. H. Sattinger, J. Szmigielski, Adv. Math., 140 (1998), 190–206 ; Inverse Problems, 15 (1999), L1–L4 | DOI | MR | Zbl | DOI | MR | Zbl

[5] R. Beals, D. H. Sattinger, J. Szmigielski, Adv. Math., 154 (2000), 229–257 | DOI | MR | Zbl

[6] A. Constantin, W. Strauss, Commun. Pure Appl. Math., 53 (2000), 603–610 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] J. Lenells, Int. Math. Res. Notices, 2004, 485–489 | DOI | MR

[8] J. Lenells, J. Nonlinear Math. Phys., 11 (2004), 151–163 | DOI | MR | Zbl

[9] A. Degasperis, D. D. Kholm, A. N. I. Khon, TMF, 133:2 (2002), 170–183 | DOI | MR

[10] C. R. Gilson, A. Pickering, J. Phys. A, 28 (1995), 7487–7494 | DOI | MR

[11] A. N. W. Hone, J. P. Wang, Inverse Problems, 19 (2003), 129–145 | DOI | MR | Zbl

[12] D. D. Holm, Z. Qiao, The Camassa–Holm Hierarchy, related $N$-dimensional integrable systems, and algebro-geometric solutions on a symplectic submanifold, E-print nlin.SI/0202009 | MR

[13] F. Gesztesy, H. Holden, Rev. Mat. Iberoamericana, 19:1 (2003), 74–142 | MR

[14] P. A. Clarkson, P. R. Gordoa, A. Pickering, Inverse Problems, 13 (1997), 1463–1476 | DOI | MR | Zbl

[15] P. G. Estevez, J. Prada, J. Phys. A, 38 (2005), 1287–1297 ; E-print nlin.SI/0412019 | DOI | MR | Zbl