Evolution of Optical Pulses in Fiber Lines with Lumped Nonlinear Devices as a Mapping Problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 277-289 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the steady-state propagation of optical pulses in fiber transmission systems with lumped nonlinear optical devices (NODs) placed periodically in the line. For the first time to our knowledge, a theoretical model is developed to describe the transmission regime with a quasilinear pulse evolution along the transmission line and the point action of NODs. We formulate the mapping problem for pulse propagation in a unit cell of the line and show that in the particular application to nonlinear optical loop mirrors, the steady-state pulse characteristics predicted by the theory accurately reproduce the results of direct numerical simulations.
Keywords: dispersive systems with point nonlinearity, mapping problem
Mots-clés : autosolitons.
@article{TMF_2005_144_2_a4,
     author = {S. Boscolo and S. A. Derevyanko and S. K. Turitsyn and A. S. Kovalev and M. M. Bogdan},
     title = {Evolution of {Optical} {Pulses} in {Fiber} {Lines} with {Lumped} {Nonlinear} {Devices} as a {Mapping} {Problem}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {277--289},
     year = {2005},
     volume = {144},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a4/}
}
TY  - JOUR
AU  - S. Boscolo
AU  - S. A. Derevyanko
AU  - S. K. Turitsyn
AU  - A. S. Kovalev
AU  - M. M. Bogdan
TI  - Evolution of Optical Pulses in Fiber Lines with Lumped Nonlinear Devices as a Mapping Problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 277
EP  - 289
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a4/
LA  - ru
ID  - TMF_2005_144_2_a4
ER  - 
%0 Journal Article
%A S. Boscolo
%A S. A. Derevyanko
%A S. K. Turitsyn
%A A. S. Kovalev
%A M. M. Bogdan
%T Evolution of Optical Pulses in Fiber Lines with Lumped Nonlinear Devices as a Mapping Problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 277-289
%V 144
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a4/
%G ru
%F TMF_2005_144_2_a4
S. Boscolo; S. A. Derevyanko; S. K. Turitsyn; A. S. Kovalev; M. M. Bogdan. Evolution of Optical Pulses in Fiber Lines with Lumped Nonlinear Devices as a Mapping Problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 277-289. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a4/

[1] A. Hasegawa, Y. Kodama, Opt. Lett., 15 (1990), 1443–1445 | DOI

[2] I. Gabitov, S. K. Turitsyn, Opt. Lett., 21 (1996), 327–329 | DOI

[3] N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, I. Bennion, Electron. Lett., 32 (1996), 54–55 | DOI

[4] J. H. B. Nijhof, N. J. Doran, W. Forysiak, A. Berntson, Electron. Lett., 34 (1998), 481–482 | DOI

[5] S. Boscolo, J. H. B. Nijhof, S. K. Turitsyn, Opt. Lett., 25 (2000), 1240–1242 | DOI

[6] S. Boscolo, S. K. Turitsyn, K. J. Blow, IEEE Photon Lett., 14 (2002), 30–32 | DOI

[7] D. Rouvillain, P. Brindel, E. Seguineau, L. Pierre, O. Leclerc, H. Choumane, G. Aubin, J. L. Oudar, Electron. Lett., 38 (2002), 1113–1114 | DOI

[8] B. S. Kerner, V. V. Osipov, Avtosolitony, M., Nauka, 1991

[9] J. D. Logan, Applied Mathematics: A Contemporary Approach, John Wiley Sons, N.Y., 1987 | MR | Zbl

[10] N. J. Smith, N. J. Doran, J. Opt. Soc. Am. B, 12 (1995), 1117–1125 | DOI