Spectral Theory of the Nonstationary Schrodinger Equation with a Two-Dimensionally Perturbed Arbitrary One-Dimensional Potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 257-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the nonstationary Schrodinger equation with the potential being a perturbation of a generic one-dimensional potential by means of a decaying two-dimensional function in the framework of the extended resolvent approach. We give the corresponding modification of the Jost and advanced/retarded solutions and spectral data and present relations between them.
Keywords: inverse scattering transform, resolvent approach, Kadomtsev–Petviashvili equation.
@article{TMF_2005_144_2_a3,
     author = {M. Boiti and F. Pempinelli and A. K. Pogrebkov and B. Prinari},
     title = {Spectral {Theory} of the {Nonstationary} {Schrodinger} {Equation} with a {Two-Dimensionally} {Perturbed} {Arbitrary} {One-Dimensional} {Potential}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {257--276},
     year = {2005},
     volume = {144},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a3/}
}
TY  - JOUR
AU  - M. Boiti
AU  - F. Pempinelli
AU  - A. K. Pogrebkov
AU  - B. Prinari
TI  - Spectral Theory of the Nonstationary Schrodinger Equation with a Two-Dimensionally Perturbed Arbitrary One-Dimensional Potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 257
EP  - 276
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a3/
LA  - ru
ID  - TMF_2005_144_2_a3
ER  - 
%0 Journal Article
%A M. Boiti
%A F. Pempinelli
%A A. K. Pogrebkov
%A B. Prinari
%T Spectral Theory of the Nonstationary Schrodinger Equation with a Two-Dimensionally Perturbed Arbitrary One-Dimensional Potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 257-276
%V 144
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a3/
%G ru
%F TMF_2005_144_2_a3
M. Boiti; F. Pempinelli; A. K. Pogrebkov; B. Prinari. Spectral Theory of the Nonstationary Schrodinger Equation with a Two-Dimensionally Perturbed Arbitrary One-Dimensional Potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 257-276. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a3/

[1] B. B. Kadomtsev, V. I. Petviashvili, DAN SSSR, 192 (1970), 753 | Zbl

[2] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego prilozh., 8 (1974), 43 ; В. С. Дрюма, Письма в ЖЭТФ, 19 (1973), 219 | Zbl

[3] V. E. Zakharov, S. V. Manakov, Sov. Sci. Rev. – Phys. Rev., 1 (1979), 133; S. V. Manakov, Physica D, 3 (1981), 420 ; A. S. Fokas, M. J. Ablowitz, Stud. Appl. Math., 69 (1983), 211 ; M. Boiti, J. Léon, F. Pempinelli, Phys. Lett. A, 141 (1989), 96 ; Xin Zhou, Commun. Math. Phys., 128 (1990), 551 ; A. S. Fokas, L. Y. Sung, Math. Proc. Cambridge Philos. Soc., 125 (1999), 113 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[4] M. Boiti, F. Pempinelli, A. K. Pogrebkov, M. K. Polivanov, TMF, 93 (1992), 181 ; M. Boiti, F. Pempinelli, A. K. Pogrebkov, M. C. Polivanov, Inverse Problems, 8 (1992), 331 ; M. Boiti, F. Pempinelli, A. Pogrebkov, Inverse Problems, 10 (1994), 505 ; J. Math. Phys., 35 (1994), 4683 ; М. Бойти, Ф. Пемпинелли, А. К. Погребков, ТМФ, 99 (1994), 185 ; M. Boiti, F. Pempinelli, A. Pogrebkov, “Spectral theory of solitons on a generic background for the KPI equation”, Nonlinear Physics. Theory and Experiment, Proc. of the Workshop (Lecce, Italy, 29 June – 7 July, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Scientific, Singapore, 1996, 37 ; Inverse Problems, 13 (1997), L7 ; М. Бойти, Ф. Пемпинелли, А. К. Погребков, Б. Принари, ТМФ, 116 (1998), 3 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[5] A. S. Fokas, A. K. Pogrebkov, Nonlinearity, 16 (2003), 771 | DOI | MR | Zbl

[6] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, J. Math. Phys., 44 (2003), 3309 | DOI | MR | Zbl

[7] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, Tr. MIAN, 2005 (to appear)

[8] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 ; Ф. Калоджеро, А. Дегасперис, Спектральные преобразования и солитоны. Методы решения и исследования нелинейных эволюционных уравнений, Мир, М., 1982 | MR | MR