@article{TMF_2005_144_2_a2,
author = {E. D. Belokolos and V. Z. \`Enol'skii and M. Salerno},
title = {Wannier {Functions} for {Quasiperiodic} {Finite-Gap} {Potentials}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {234--256},
year = {2005},
volume = {144},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a2/}
}
TY - JOUR AU - E. D. Belokolos AU - V. Z. Ènol'skii AU - M. Salerno TI - Wannier Functions for Quasiperiodic Finite-Gap Potentials JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 234 EP - 256 VL - 144 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a2/ LA - ru ID - TMF_2005_144_2_a2 ER -
E. D. Belokolos; V. Z. Ènol'skii; M. Salerno. Wannier Functions for Quasiperiodic Finite-Gap Potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 234-256. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a2/
[1] E. D. Belokolos, V. Z. Enolskii, M. Salerno, J. Phys. A, 37 (2004), 9685–9704 ; E-print cond-mat/0401440 | DOI | MR | Zbl
[2] N. Ercolani, M. G. Forest, D. W. McLaughlin, R. Montgomery, Duke Math. J., 55 (1987), 949–983 ; H. Flaschka, G. Forest, D. McLaughlin, Commun. Pure Appl. Math., 33:6 (1980), 739–794 | DOI | MR | Zbl | DOI | MR
[3] I. M. Krichever, Funkts. analiz i ego prilozh., 22:3 (1988), 37–52 | MR | Zbl
[4] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Hyperelliptic {K}leinian functions and applications”, Solitons, {G}eometry and {T}opology: {O}n the {C}rossroad, Amer. Math. Soc. Transl. Ser. 2, 179, eds. V. M. Buchstaber, S. P. Novikov, AMS, Providence, RI, 1997, 1–34 | MR
[5] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, Rev. Math. Math. Phys., 102:2 (1997), 1–125 | MR
[6] V. M. Bukhshtaber, V. Z. Enolskii, D. V. Leikin, Funkts. analiz i ego prilozh., 33:2 (1999), 1–15 | DOI | MR | Zbl
[7] V. M. Bukhshtaber, D. V. Leikin, Funkts. analiz i ego prilozh., 36:4 (2002), 18–34 | DOI | MR | Zbl
[8] S. Baldwin, J. Gibbons, J. Phys. A, 36 (2003), 8393–8413 ; 37 (2004), 5341–5354 ; J. D. Edelstein, M. Gómez-Reino, M. Mariño, Adv. Theor. Math. Phys., 4 (2000), 503–543 ; ; J. C. Eilbeck, V. Z. Enolskii, E. Previato, Lett. Math. Phys., 63 (2003), 5–17 ; S. Matsutani, J. Geom. Phys., 794 (2002), 1–17 ; S. Matsutani, Y.Ônishi, Rev. Math. Phys., 15 (2003), 559–628 ; Glasgow Math. J., 44 (2002), 353–364 E-print hep-th/0006113 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR
[9] E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, N.Y., 1955 | MR | Zbl
[10] R. Johnson, J. Moser, Commun. Math. Phys., 84 (1982), 403–438 | DOI | MR | Zbl
[11] L. A. Pastur, Commun. Math. Phys., 75 (1980), 179–196 | DOI | MR | Zbl
[12] S. Kotani, “Lyapunov indices determine absolutely continuous spectra of stationary random one–dimensional {S}chrödinger operators”, Stochastic Analysis, Proc. on Stochastic Analysis. Taniguchi Symp. (Katata, Kyoto, 1982), North-Holland Math. Libr., 32, ed. K. Itô, Kinokuniya, Tokyo; North-Holland, Amsterdam, 1984, 225–247 | DOI | MR
[13] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR
[14] E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its, V. B. Matveev, Algebro {G}eometric {A}pproach to {N}onlinear {I}ntegrable {E}quations, Springer, Berlin, 1994
[15] F. Gesztesy, H. Holden, {S}oliton {E}quations and {T}heir {A}lgebro-{G}eometric {S}olutions. $(1+1)$-{D}imensional {C}ontinuous {M}odels, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[16] J. Guckenheimer, J. Moser, S. E. Newhouse, “Dynamical Systems”, {C}.{I}.{M}.{E}. {L}ectures (Bressanone, Italy, June 1978), Progress in Mathematics, 8, Birkhäuser, Basel–Stuttgart, 1980, 233–289 ; В. А. Марченко, И. В. Островский, Матем. сб., 97 (1975), 493–554 | MR
[17] H. Weyl, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl
[18] Y. Ônishi, “Determinant expressions for hyperelliptic functions”, with an Appendix by Shigeki Matsutani: Connection of The formula of Cantor and of Brioschi–Kiepert type, Proc. Edinburgh Math. Soc., 2005 (to appear) | MR
[19] O. Bolza, Amer. J. Math., 17 (1895), 11–36 | DOI | MR
[20] H. F. Baker, Abel's Theorem and the Allied Theory of Theta Functions, Cambridge Univ. Press, Cambridge, 1897 ; reprinted, 1995; H. F. Baker, Amer. J. Math., 20 (1898), 301–384 | MR | Zbl | DOI | MR | Zbl
[21] H. F. Baker, Multiple Periodic Functions, Cambridge Univ. Press, Cambridge, 1907
[22] A. R. Its, V. B. Matveev, TMF, 23 (1975), 51–68 | MR
[23] B. A. Dubrovin, UMN, 36 (1981), 11–80 | MR | Zbl
[24] A. Krazer, Lehrbuch der {T}hetafunktionen, Teubner, Leipzig, 1903 ; Reprinted, AMS Chelsea Publishing, 1998 | MR | Zbl
[25] E. D. Belokolos, V. Z. Enolskii, J. Math. Sci., 106:6 (2001), 3395–3486 ; 108:3 (2002), 295–374 | DOI | MR | Zbl | DOI | MR | Zbl
[26] L. Gavrilov, A. M. Perelomov, J. Math. Phys., 40 (1999), 6339–6352 | DOI | MR | Zbl
[27] I. G. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR
[28] N. Seiberg, E. Witten, Nucl. Phys. B, 426:2 (1994), 19–52 ; Erratum, 430, 485–486 ; ; 431, no. 3, 1994 ; E-print hep-th/9407087E-print hep-th/9407087 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[29] A. Gorskii, I. Krichever, A. Marshakov, A. Mironov, A. Morosov, Phys. Lett. B, 355 (1995), 466–474 | DOI | MR
[30] P. Griffitth, J. Harris, Principles of {A}lgebraic {G}eometry, Wiley, N.Y., 1978 | MR