Killed Random Processes and Heat Kernels
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 423-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $V(x)\geq0$ be a given function tending to a constant at infinity. It is well known that the density of the Brownian motion $B_t$ killed at the infinitesimal rate $V$ is a Green's function for the heat operator with such a potential. With an appropriate generalization, its Laplace transform also gives the density of $\int_0^tV(B_s)ds$. We construct such a Green's function via spectral analysis of the classical one-dimensional stationary Schrodinger operator.
Keywords: Brownian motion, heat equation propagator.
@article{TMF_2005_144_2_a19,
     author = {Kh. Villarroel},
     title = {Killed {Random} {Processes} and {Heat} {Kernels}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {423--432},
     year = {2005},
     volume = {144},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a19/}
}
TY  - JOUR
AU  - Kh. Villarroel
TI  - Killed Random Processes and Heat Kernels
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 423
EP  - 432
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a19/
LA  - ru
ID  - TMF_2005_144_2_a19
ER  - 
%0 Journal Article
%A Kh. Villarroel
%T Killed Random Processes and Heat Kernels
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 423-432
%V 144
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a19/
%G ru
%F TMF_2005_144_2_a19
Kh. Villarroel. Killed Random Processes and Heat Kernels. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 423-432. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a19/

[1] V. Khorskhemke, R. Lefevr, Indutsirovannye shumomo perekhody: teoriya i primenenie v fizike, khimii i biologii, Mir, M., 1987 ; R. N. Bhattacharya, E. C. Waymire, Stochastic Processes with Applications, Wiley series in probability, J. Wiley, N.Y., 1990 ; G. Roepstorff, Path Integral Approach to Quantum Physics, Springer, Berlin, 1996 ; V. Konotop, L. Vazquez, Nonlinear Random Waves, World Scientific, Singapore, 1994 ; E. B. Dynkin, Markov Processes, V. 1, 2, Academic Press, N.Y., 1965 ; J. Villarroel, Stochastic Anal. Appl., 21(6) (2003), 1391 | MR | MR | MR | Zbl | MR | Zbl | MR | DOI | MR | Zbl

[2] J. Villarroel, M. J. Ablowitz, Studies Applied Mathematics, 109 (2002), 151 ; J. Villarroel, M. J. Ablowitz, Nonlinearity, 17 (2004), 1843 | DOI | MR | Zbl | DOI | MR

[3] M. Boiti, F. Pempinelli, A. Pogrebkov, Inverse problems, 13:3 (1997), L7 ; M. Boiti, F. Pempinelli, A. Pogrebkov, B. Prinari, Inverse problems, 17:4 (2001), 937 ; Phys. Lett. A, 285 (2001), 307 ; J. Math. Phys., 43(2) (2002), 1044 ; B. Prinari, Inverse Scattering Transform for the Kadomtsev–Petviashvili equations, Ph. D thesis, Univ. of Lecce, 1999, unpublished; A. Fokas, A. Pogrebkov, Nonlinearity, 18 (2003), 771 ; M. J. Ablowitz, J. Villarroel, “Initial value problems and solutions of the Kadomtsev–Petviashvili equation”, New Trends in Integrability and Partial Solvability, Proc. of NATO Adv. Res. Workshop (Cadiz, Spain, 12–16 June, 2002), NATO Sci. Ser. II: Math. Phys. Chem., 132, eds. A. B. Shabat, A. González-López et al., Kluwer, Dordrecht, 2004, 1 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | MR | Zbl

[4] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 ; M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, UK, 1991 ; P. Deift, E. Trubowitz, Comm. Pure and Appl. Math., 32 (1979), 121 ; Л. Д. Фаддеев, УМН, 14:4 (1959), 57 | MR | MR | Zbl | DOI | MR | Zbl | MR

[5] L. Faddeev, Am. Math. Soc. Transl. Ser. 2, 65 (1967), 139 | Zbl