Killed Random Processes and Heat Kernels
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 423-432
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $V(x)\geq0$ be a given function tending to a constant at infinity. It is well known that the density of the Brownian motion $B_t$ killed at the infinitesimal rate $V$ is a Green's function for the heat operator with such a potential. With an appropriate generalization, its Laplace transform also gives the density of $\int_0^tV(B_s)ds$. We construct such a Green's function via spectral analysis of the classical one-dimensional stationary Schrodinger operator.
Keywords:
Brownian motion, heat equation propagator.
@article{TMF_2005_144_2_a19,
author = {Kh. Villarroel},
title = {Killed {Random} {Processes} and {Heat} {Kernels}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {423--432},
publisher = {mathdoc},
volume = {144},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a19/}
}
Kh. Villarroel. Killed Random Processes and Heat Kernels. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 423-432. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a19/