Perturbative Analysis of Wave Interaction in Nonlinear Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 410-422
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose a new way to handle obstacles to asymptotic integrability in perturbed nonlinear PDEs in the method of normal forms (NFs) in the case of multiwave solutions. Instead of including the whole obstacle in the NF, we include only its resonant part (if it exists) in the NF and assign the remainder to the homological equation. This leaves the NF integrable, and its solutions retain the character of the solutions of the unperturbed equation. We use the freedom in the expansion to construct canonical obstacles that are confined to the interaction region of the waves. For soliton solutions (e. g., of the KdV equation), the interaction region is a finite domain around the origin; the canonical obstacles then do not generate secular terms in the homological equation. When the interaction region is infinite (or semi-infinite, e.g., in wave-front solutions of the Burgers equation), the obstacles may contain resonant terms. The obstacles generate waves of a new type that cannot be written as functionals of the solutions of the NF. When the obstacle contributes a resonant term to the NF, this leads to a nonstandard update of the wave velocity.
Keywords:
nonlinear evolution equations, wave interaction, obstacles to asymptotic integrability, perturbed KdV equation, perturbed Burgers equation.
@article{TMF_2005_144_2_a18,
author = {A. Veksler and Y. Zarmi},
title = {Perturbative {Analysis} of {Wave} {Interaction} in {Nonlinear} {Systems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {410--422},
publisher = {mathdoc},
volume = {144},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a18/}
}
TY - JOUR AU - A. Veksler AU - Y. Zarmi TI - Perturbative Analysis of Wave Interaction in Nonlinear Systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 410 EP - 422 VL - 144 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a18/ LA - ru ID - TMF_2005_144_2_a18 ER -
A. Veksler; Y. Zarmi. Perturbative Analysis of Wave Interaction in Nonlinear Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 410-422. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a18/