Perturbative Analysis of Wave Interaction in Nonlinear Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 410-422 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a new way to handle obstacles to asymptotic integrability in perturbed nonlinear PDEs in the method of normal forms (NFs) in the case of multiwave solutions. Instead of including the whole obstacle in the NF, we include only its resonant part (if it exists) in the NF and assign the remainder to the homological equation. This leaves the NF integrable, and its solutions retain the character of the solutions of the unperturbed equation. We use the freedom in the expansion to construct canonical obstacles that are confined to the interaction region of the waves. For soliton solutions (e. g., of the KdV equation), the interaction region is a finite domain around the origin; the canonical obstacles then do not generate secular terms in the homological equation. When the interaction region is infinite (or semi-infinite, e.g., in wave-front solutions of the Burgers equation), the obstacles may contain resonant terms. The obstacles generate waves of a new type that cannot be written as functionals of the solutions of the NF. When the obstacle contributes a resonant term to the NF, this leads to a nonstandard update of the wave velocity.
Keywords: nonlinear evolution equations, wave interaction, obstacles to asymptotic integrability, perturbed KdV equation, perturbed Burgers equation.
@article{TMF_2005_144_2_a18,
     author = {A. Veksler and Y. Zarmi},
     title = {Perturbative {Analysis} of {Wave} {Interaction} in {Nonlinear} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--422},
     year = {2005},
     volume = {144},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a18/}
}
TY  - JOUR
AU  - A. Veksler
AU  - Y. Zarmi
TI  - Perturbative Analysis of Wave Interaction in Nonlinear Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 410
EP  - 422
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a18/
LA  - ru
ID  - TMF_2005_144_2_a18
ER  - 
%0 Journal Article
%A A. Veksler
%A Y. Zarmi
%T Perturbative Analysis of Wave Interaction in Nonlinear Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 410-422
%V 144
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a18/
%G ru
%F TMF_2005_144_2_a18
A. Veksler; Y. Zarmi. Perturbative Analysis of Wave Interaction in Nonlinear Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 410-422. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a18/

[1] D. J. Kaup, SIAM J. Appl. Math., 31 (1976), 121 | DOI | MR | Zbl

[2] D. J. Kaup, A. S. Newell, Proc. Roy. Soc. London. A, 361 (1978), 413 | DOI

[3] V. I. Karpman, E. M. Maslov, ZhETF, 73 (1977), 537 | MR

[4] A. C. Newell, “The Inverse Scattering Transform”, Solitons, eds. R. K. Bullough, P. J. Caudrey, Springer, Berlin, 1980, 177 | DOI | MR

[5] L. A. Kalyakin, UMN, 44:1 (1989), 5 | MR | Zbl

[6] L. A. Kalyakin, TMF, 92:1 (1992), 62 | MR

[7] L. A. Kalyakin, Physica D, 87 (1995), 193 | DOI | MR | Zbl

[8] L. A. Kalyakin, V. A. Lazarev, TMF, 112:1 (1997), 92 | DOI | MR | Zbl

[9] Y. Kodama, Phys. Lett. A, 112 (1985), 193 | DOI | MR

[10] Y. Kodama, Physica D, 16 (1985), 14 | DOI | MR

[11] Y. Kodama, “Normal Form and Solitons”, Topics in Soliton Theory and Exactly Solvable Nonlinear Equation, Proc. of the Conf. on Nonlinear Evolutional Equations, Solitons and the Inverse Scattering Transform (Oberwolfach, Germany, July 27 – August 2, 1986), eds. M. J. Ablowitz, B. Fuchssteiner, M. Kruskal, World Scientific, Singapore, 1987, 319 | MR

[12] Y. Kodama, A. V. Mikhailov, “Obstacles to asymptotic integrability”, Algebraic Aspects of Integrable Systems, eds. A. S. Fokas, I. M. Gelfand, Birkhauser, Boston, 1997, 173 | DOI | MR | Zbl

[13] Y. Hiraoka, Y. Kodama, Normal Form and Solitons, Lecture Notes, Euro Summer School 2001 (Cambridge, The Isaac Newton Institute, August 13–24, 2001), unpublished | MR

[14] Y. Kodama, T. Taniuti, J. Phys. Soc. Japan, 47 (1979), 1706 | DOI | MR | Zbl

[15] T. Fokas, L. Luo, Contemp. Math., 200, 1996, 85 | DOI | MR | Zbl

[16] R. A. Kraenkel, J. G. Pereira, E. C. de Rey Neto, Phys. Rev. E, 58 (1998), 2526 | DOI | MR

[17] R. A. Kraenkel, M. A. Manna, V. Merle, J. C. Montero, J. G. Pereira, Phys. Rev. E, 54 (1996), 2976 | DOI | MR

[18] R. A. Kraenkel, Phys. Rev. E, 57 (1998), 4775 | DOI | MR

[19] R. A. Kraenkel, M. Senthilvelan, A. I. Zenchuk, J. Math. Phys., 41 (2000), 3160 | DOI | MR | Zbl

[20] A. Degasperis, S. V. Manakov, P. M. Santini, Physica D, 100 (1997), 187 | DOI | MR | Zbl

[21] Y. Kodama, T. Taniuti, J. Phys. Soc. Japan, 45 (1978), 298 | DOI | MR | Zbl

[22] Y. Kodama, J. Phys. Soc. Japan, 45 (1978), 311 | DOI | MR | Zbl

[23] B. Fuchssteiner, A. S. Fokas, Physica D, 4 (1981), 47 | DOI | MR | Zbl

[24] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[25] H. Tasso, J. Phys. A, 29 (1996), 7779 | DOI | MR | Zbl

[26] A. S. Fokas, R. H. J. Grimshaw, D. E. Pelinovsky, J. Math. Phys., 37 (1996), 3415 | DOI | MR | Zbl

[27] Y. Kodama, Phys. Lett. A, 123 (1987), 276 | DOI | MR

[28] R. Hirota, Phys. Rev. Lett., 27 (1971), 1192 | DOI | Zbl

[29] J. P. Keener, D. W. McLaughlin, Phys. Rev. A, 16 (1977), 777 | DOI | MR

[30] R. L. Sachs, SIAM J. Math. Anal., 14 (1983), 674 | DOI | MR | Zbl

[31] R. L. Sachs, SIAM J. Math. Anal., 15 (1984), 468 | DOI | MR | Zbl