Complex Sine-Gordon-2: A New Algorithm for Multivortex Solutions on the Plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 405-409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a new vorticity-raising transformation for the second integrable complexification of the sine-Gordon equation on the plane. The new transformation is a product of four Schlesinger maps of the Painleve-V equation to itself and allows constructing the $n$-vortex solution more efficiently than the previously reported transformation comprising a product of $2n$ maps.
Keywords: vortices, Backlund transformations, Painleve-V equation
Mots-clés : complex sine-Gordon equation.
@article{TMF_2005_144_2_a17,
     author = {N. Olver and I. V. Barashenkov},
     title = {Complex {Sine-Gordon-2:} {A} {New} {Algorithm} for {Multivortex} {Solutions} on the {Plane}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--409},
     year = {2005},
     volume = {144},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a17/}
}
TY  - JOUR
AU  - N. Olver
AU  - I. V. Barashenkov
TI  - Complex Sine-Gordon-2: A New Algorithm for Multivortex Solutions on the Plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 405
EP  - 409
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a17/
LA  - ru
ID  - TMF_2005_144_2_a17
ER  - 
%0 Journal Article
%A N. Olver
%A I. V. Barashenkov
%T Complex Sine-Gordon-2: A New Algorithm for Multivortex Solutions on the Plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 405-409
%V 144
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a17/
%G ru
%F TMF_2005_144_2_a17
N. Olver; I. V. Barashenkov. Complex Sine-Gordon-2: A New Algorithm for Multivortex Solutions on the Plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 405-409. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a17/

[1] K. Pohlmeyer, Commun. Math. Phys., 46 (1976), 207 ; F. Lund, T. Regge, Phys. Rev. D, 14 (1976), 1524 ; Б. С. Гетманов, Письма в ЖЭТФ, 25 (1977), 132; A. Neveu, N. Papanicolaou, Commun. Math. Phys., 58 (1978), 31 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[2] S. Sciuto, Phys. Lett. B, 90 (1980), 75 ; Б. С. Гетманов, ТМФ, 48 (1981), 13 | DOI | MR | MR

[3] V. A. Fateev, Int. J. Mod. Phys. A, 6 (1991), 2109 ; I. Bakas, Int. J. Mod. Phys. A, 9 (1994), 3443 ; Q-H. Park, Phys. Lett. B, 328 (1994), 329 ; V. A. Brazhnikov, Nucl. Phys. B, 501 (1997), 685 ; I. Bakas, J. Sonnenschein, JHEP, 0212 (2002), 049 ; E-print hep-th/0211257 | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR

[4] I. V. Barashenkov, D. E. Pelinovsky, Phys. Lett. B, 436 (1998), 117 | DOI | MR

[5] I. V. Barashenkov, V. S. Shchesnovich, R. M. Adams, Nonlinearity, 15 (2002), 2121 | DOI | MR

[6] A. S. Fokas, U. Mugan, M. J. Ablowitz, Physica D, 30 (1988), 247 ; V. Gromak, “Bäcklund transformations of Painlevé equations and their applications”, The Painlevé Property. One Century Later (Cargése School, 3–22 June, 1996), CRM Series in Mathematical Physics, ed. R. Conte, Springer, N.Y., 1999, 687 | DOI | MR | Zbl | MR | Zbl