Classical and Quantum Systems: Alternative Hamiltonian Descriptions
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 364-383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In complete analogy with the classical situation (which is briefly reviewed), we give the bi-Hamiltonian description for quantum systems. We also analyze compatible Hermitian structures in full analogy with compatible Poisson structures.
Keywords: quantum-classical transition, quantum bi-Hamiltonian systems, alternative Hermitian structures, biunitary operators.
@article{TMF_2005_144_2_a14,
     author = {G. Marmo and G. Scolarici and A. Simoni and F. Ventriglia},
     title = {Classical and {Quantum} {Systems:} {Alternative} {Hamiltonian} {Descriptions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {364--383},
     year = {2005},
     volume = {144},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a14/}
}
TY  - JOUR
AU  - G. Marmo
AU  - G. Scolarici
AU  - A. Simoni
AU  - F. Ventriglia
TI  - Classical and Quantum Systems: Alternative Hamiltonian Descriptions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 364
EP  - 383
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a14/
LA  - ru
ID  - TMF_2005_144_2_a14
ER  - 
%0 Journal Article
%A G. Marmo
%A G. Scolarici
%A A. Simoni
%A F. Ventriglia
%T Classical and Quantum Systems: Alternative Hamiltonian Descriptions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 364-383
%V 144
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a14/
%G ru
%F TMF_2005_144_2_a14
G. Marmo; G. Scolarici; A. Simoni; F. Ventriglia. Classical and Quantum Systems: Alternative Hamiltonian Descriptions. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 364-383. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a14/

[1] C. S. Gardner, J. M. Green, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19 (1967), 1095 ; Л. Д. Фаддеев, В. Е. Захаров, Функц. анализ и его прилож., 5:4 (1971), 18 | DOI | Zbl | MR | Zbl

[2] J. F. Cariñena, J. Grabowski, G. Marmo, Lie–Scheffers Systems: A Geometric Approach, Bibliopolis, Napoli, 2000 | MR | Zbl

[3] J. F. Carinena, J. Grabowski, G. Marmo, Int. J. Mod. Phys. A, 15 (2000), 4797 | DOI | MR | Zbl

[4] G. Marmo, A. Simoni, F. Ventriglia, Rep. Math. Phys., 46 (2000), 129

[5] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Fizmatlit, M., 1960 | MR

[6] E. P. Wigner, Phys. Rev., 77 (1950), 711 | DOI | MR | Zbl

[7] A. M. Bloch, Phys. Lett. A, 116 (1986), 353 ; Trans. Am. Math. Soc., 302 (1987), 787 | DOI | MR | DOI | MR | Zbl

[8] V. I. Man'ko, G. Marmo, E. C. G. Sudarshan, F. Zaccaria, Int. J. Mod. Phys. B, 11 (1997), 1281 | DOI

[9] B. A. Dubrovin, G. Marmo, A. Simoni, Mod. Phys. Lett. A, 5 (1990), 1229 | DOI | MR | Zbl

[10] G. Marmo, G. Vilasi, Mod. Phys. Lett. B, 10 (1996), 545 | DOI | MR

[11] P. Antonini, G. Marmo, C. Rubano, Nuovo Cimento B, 86 (1985), 17 | DOI | MR

[12] F. J. Dyson, Am. J. Phys., 58 (1990), 209 | DOI | MR | Zbl

[13] J. F. Carinena, L. A. Ibort, G. Marmo, A. Stern, Phys. Rep., 263 (1995), 153 | DOI | MR

[14] J. Douglas, Trans. Am. Math. Soc., 50 (1941), 71 ; G. Marmo, E. J. Saletan, Nuovo Cimento B, 40 (1977), 57 ; G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo, C. Rubano, Phys. Rep., 188 (1990), 147 ; A. P. Balachandran, T. R. Govindarajan, B. Vijayalakshmi, Phys. Rev. D, 18 (1978), 1950 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR

[15] G. Marmo, Acta Appl. Math., 70 (2002), 161 | DOI | MR | Zbl

[16] J. Grabowski, G. Marmo, “Binary operations in classical and quantum mechanics”, Classical and Quantum Integrability, Banach Center Publ., 59, eds. J. Grabowski, G. Marmo, P. Urbanski, Acad. of Science. Inst. of Math., Warsaw, 2003, 163 | DOI | MR | Zbl

[17] A. Nijenhuis, R. W. Richardson, J. Algebra, 9 (1968), 42 | DOI | MR | Zbl

[18] M. Gerstenhaber, Ann. Math., 79 (1964), 59 | DOI | MR | Zbl

[19] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR

[20] J. C. Baez, I. E. Segal, Z. F. Zhou, Introduction to Algebraic and Constructive Quantum Field Theory, Princeton Univ. Press, Princeton, N.J., 1992 | MR | Zbl

[21] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[22] G. W. Mackey, Induced Representations of Groups and Quantum Mechanics, Benjamin, N.Y., 1968 | MR | Zbl

[23] A. Weil, Introduction à l'Etudes des Variétés Kaehleriennes, Hermann, Paris, 1958 | MR | Zbl

[24] G. B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, N.J., 1989 | MR | Zbl

[25] M. Kontsevich, Lett. Math. Phys., 66 (2003), 157 ; E-print q-alg/9709040 | DOI | MR | Zbl

[26] C. Zachos, J. Math. Phys., 41 (2000), 5129 | DOI | MR | Zbl

[27] A. Simoni, E. C. G. Sudarshan, F. Zaccaria, Nuovo Cimento B, 5 (1971), 134 | DOI | MR

[28] O. V. Man'ko, V. I. Man'ko, G. Marmo, J. Phys. A, 35 (2002), 699 | DOI | MR | Zbl

[29] G. Marmo, E. J. Saletan, A. Simoni, B. Vitale, Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction, Wiley, Chichester, 1985 | MR | Zbl

[30] G. Esposito, G. Marmo, G. Sudarschan, From Classical to Quantum Mechanics, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[31] M. Giordano, G. Marmo, C. Rubano, Inverse Prob., 9 (1993), 443 | DOI | MR | Zbl

[32] G. Marmo, G. Morandi, A. Simoni, F. Ventriglia, J. Phys. A, 35 (2002), 8393 | DOI | MR | Zbl

[33] F. Magri, J. Math. Phys., 19 (1978), 1156 ; “A geometrical approach to the nonlinear solvable equations”, Dynamical Systems, Lect. Notes Phys., 120, eds. M. Boiti, F. Pempinelli, G. Soliani, Springer, Berlin, 1980, 233 ; B. Fuchssteiner, Progr. Theor. Phys., 68 (1982), 1082 ; S. De Filippo, G. Marmo, G. Vilasi, Nuovo Cimento B, 83 (1984), 97 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI

[34] I. M. Gelfand, I. Zakharevich, “On local geometry of a bihamiltonian structure”, The Gelfand Math. Seminars, 1990–1992, eds. L. Corwin, I. M. Gelfand, J. Lepowski, Birkauser, Basel, 1993, 51 | DOI | MR | Zbl

[35] A. Ibort, F. Magri, G. Marmo, J. Geom. Phys., 33 (2000), 210 | DOI | MR | Zbl

[36] Bĕla de Sz Nagy, Acta Sci. Math., 11:3 (1945), 152 | MR

[37] A. Markov, DAN SSSR, 1:8 (1936), 299

[38] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[39] S. Banakh, Teoriya lineinykh operatsii, RKhD, Izhevsk, 2001

[40] G. Marmo, A. Simoni, F. Ventriglia, Int. J. Mod. Phys. A, 19 (2004), 2561 | DOI | MR | Zbl

[41] M. A. Naimark, Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[42] G. Marmo, G. Scolarici, A. Simoni, F. Ventriglia, Note di Matematica, 23 (2004), 173 | MR | Zbl

[43] G. Marmo, G. Scolarici, A. Simoni, F. Ventriglia, J. Phys. A, 38 (2005), 3813 | DOI | MR | Zbl