Integrability of Generalized (Matrix) Ernst Equations in String Theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 214-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We elucidate the integrability structures of the matrix generalizations of the Ernst equation for Hermitian or complex symmetric $(d\times d)$-matrix Ernst potentials. These equations arise in string theory as the equations of motion for the truncated bosonic parts of the low-energy effective action for the respective dilaton and $(d\times d)$-matrix of moduli fields or for a string gravity model with a scalar (dilaton) field, a $U(1)$ gauge vector field, and an antisymmetric 3-form field, all depending on only two space-time coordinates. We construct the corresponding spectral problems based on the overdetermined $(2d\times 2d)$-linear systems with a spectral parameter and the universal (i.e., solution-independent) structures of the canonical Jordan forms of their matrix coefficients. The additionally imposed existence conditions for each of these systems of two matrix integrals with appropriate symmetries provide specific (coset) structures of the related matrix variables. We prove that these spectral problems are equivalent to the original field equations, and we envisage an approach for constructing multiparametric families of their solutions.
Keywords: Ernst equations, string gravity, integrability, spectral problems
Mots-clés : monodromy.
@article{TMF_2005_144_2_a0,
     author = {G. A. Alekseev},
     title = {Integrability of {Generalized} {(Matrix)} {Ernst} {Equations} in {String} {Theory}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {214--225},
     year = {2005},
     volume = {144},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a0/}
}
TY  - JOUR
AU  - G. A. Alekseev
TI  - Integrability of Generalized (Matrix) Ernst Equations in String Theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 214
EP  - 225
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a0/
LA  - ru
ID  - TMF_2005_144_2_a0
ER  - 
%0 Journal Article
%A G. A. Alekseev
%T Integrability of Generalized (Matrix) Ernst Equations in String Theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 214-225
%V 144
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a0/
%G ru
%F TMF_2005_144_2_a0
G. A. Alekseev. Integrability of Generalized (Matrix) Ernst Equations in String Theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 2, pp. 214-225. http://geodesic.mathdoc.fr/item/TMF_2005_144_2_a0/

[1] V. A. Belinskii, V. E. Zakharov, ZhETF, 75 (1978), 1953 ; 77 (1979), 3 | MR | MR

[2] F. J. Ernst, Phys. Rev., 167:2 (1968), 1175 | DOI

[3] F. J. Ernst, Phys. Rev., 168:2 (1968), 1415 | DOI

[4] G. A. Alekseev, DAN SSSR, 268:6 (1983), 1347 | MR

[5] A. Kumar, K. Ray, Phys. Lett. B, 358 (1995), 223 | DOI | MR

[6] I. Bakas, Nucl. Phys. B, 428 (1994), 374 ; Phys. Rev. D, 54 (1996), 6424 | DOI | MR | Zbl | DOI | MR

[7] D. V. Gal'tsov, O. V. Kechkin, Phys. Lett. B, 361 (1995), 52 ; Phys. Rev. D, 54 (1996), 1656 ; D. V. Gal'tsov, S. A. Sharakin, Phys. Lett. B, 399 (1997), 250 | DOI | MR | DOI | MR | DOI | MR

[8] W. Kinnersley, D. M. Chitre, J. Math. Phys., 19 (1978), 1927

[9] I. Hauser, F. J. Ernst, Gen. Rel. Grav., 33 (2001), 195 | DOI | MR | Zbl

[10] G. A. Alekseev, Tr. MIAN SSSR, 176, 1987, 211 | MR | Zbl

[11] N. R. Sibgatullin, Kolebaniya i volny v silnykh gravitatsionnykh i elektromagnitnykh polyakh, Nauka, M., 1984 | MR | Zbl

[12] G. A. Alekseev, M. V. Yurova, “Integrable structure of the low-energy string gravity equations in $D=4$ space-times with two commuting isometries”, Proc. of Int. Workshop “Supersymmetries and Quantum Symmetries” (Dubna, Russia, July 24–29, 2003), eds. E. Ivanov, A. Pashnev, JINR, Dubna, 2004, 159; E-print hep-th/0401077

[13] G. A. Alekseev, DAN SSSR, 283:3 (1985), 577 | MR

[14] G. A. Alekseev, “Monodromy transform approach to solution of some field equations in general relativity and string heory”, Proc. of Int. Workshop “Nonlinearity, Integrability and all that: Twenty years after NEEDS'79” (Gallipoli, Lecce, Italy, July 1–10, 1999), eds. M. Boiti et al., World Scientific, Singapore, 2000, 12 ; ; Physica D, 152 (2001), 97 ; E-print gr-qc/9911045E-print gr-qc/0001012 | DOI | MR | Zbl | DOI | MR | Zbl