Hamiltonian Flows on Euler-Type Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 83-93
Voir la notice de l'article provenant de la source Math-Net.Ru
We analyze properties of Hamiltonian symmetry flows on hyperbolic Euler–Liouville-type equations $\mathcal E_{EL}'$. We obtain the description of their Noether symmetries assigned to the integrals of these equations. The integrals provide Miura transformations from $\mathcal E_{EL}'$ to the multicomponent wave equations $\mathcal E$. Using these substitutions, we generate an infinite-Hamiltonian commutative subalgebra $\mathfrak A$ of local Noether symmetry flows on $\mathcal E$ proliferated by weakly nonlocal recursion operators. We demonstrate that the correspondence between the Magri schemes for $\mathfrak A$ and for the induced “modified” Hamiltonian flows $\mathfrak B\subset\operatorname{sym}\mathcal E_{EL}'$ is such that these properties are transferred to $\mathfrak B$ and the recursions for $\mathcal E_{EL}'$ are factored. We consider two examples associated with the two-dimensional Toda lattice.
Keywords:
two-dimensional Toda lattice, KdV equation, commutative hierarchies.
Mots-clés : Boussinesq equation, Miura transformation
Mots-clés : Boussinesq equation, Miura transformation
@article{TMF_2005_144_1_a8,
author = {A. V. Kiselev},
title = {Hamiltonian {Flows} on {Euler-Type} {Equations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {83--93},
publisher = {mathdoc},
volume = {144},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a8/}
}
A. V. Kiselev. Hamiltonian Flows on Euler-Type Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 83-93. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a8/