Symmetries of Field Theories on the Noncommutative Plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 64-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We report new developments concerning the symmetry properties and their actions on special solutions allowed by certain field theory models on the noncommutative plane. In particular, we seek Galilean-invariant models. The analysis indicates that this requirement strongly restricts the admissible interactions. Moreover, if a scalar field is coupled to a gauge field, then a geometric phase emerges for vortexlike solutions transformed by Galilean boosts.
Keywords: symmetries of field theories, noncommutative plane, Chern–Simons field.
@article{TMF_2005_144_1_a6,
     author = {P. A. Horv\'athy and L. Martina and P. C. Stichel},
     title = {Symmetries of {Field} {Theories} on the {Noncommutative} {Plane}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {64--73},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a6/}
}
TY  - JOUR
AU  - P. A. Horváthy
AU  - L. Martina
AU  - P. C. Stichel
TI  - Symmetries of Field Theories on the Noncommutative Plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 64
EP  - 73
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a6/
LA  - ru
ID  - TMF_2005_144_1_a6
ER  - 
%0 Journal Article
%A P. A. Horváthy
%A L. Martina
%A P. C. Stichel
%T Symmetries of Field Theories on the Noncommutative Plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 64-73
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a6/
%G ru
%F TMF_2005_144_1_a6
P. A. Horváthy; L. Martina; P. C. Stichel. Symmetries of Field Theories on the Noncommutative Plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 64-73. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a6/

[1] M. R. Douglas, N. A. Nekrasov, Rev. Mod. Phys., 73 (2001), 977 | DOI | MR | Zbl

[2] R. J. Szabo, Phys. Rep., 378 (2003), 203 ; E-print hep-th/0109162 | DOI | MR

[3] R. B. Laughlin, Phys. Rev. Lett., 50 (1983), 1395 | DOI

[4] D. Arovas, J. R. Schrieffer, F. Wilczek, Phys. Rev. Lett., 53 (1984), 772 | DOI

[5] S. M. Girvin, T. Jach, Phys. Rev. A, 29 (1984), 5617 | MR

[6] P. A. Horváthy, L. Martina, P. C. Stichel, Enlarged Galilean symmetry of anyons and the Hall effect, E-print hep-th/0412090

[7] M.-C. Chang, Q. Niu, Phys. Rev. B, 53 (1996), 7010 | DOI

[8] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, The Geometric Phase in Quantum Systems, Text and Monographs in Physics, Springer, Berlin, 2003 | MR

[9] J. Lukierski, P. C. Stichel, W. J. Zakrzewski, Ann. Phys., 260 (1997), 224 ; 306 (2003), 78 ; E-print hep-th/0207149 | DOI | MR | Zbl | DOI | MR | Zbl

[10] C. Duval, P. A. Horváthy, Phys. Lett. B, 479 (2000), 284 ; ; J. Phys. A, 34 (2001), 10097 ; ; P. A. Horváthy, Ann. Phys., 299 (2002), 128 ; E-print hep-th/0002233E-print hep-th/0106089E-print hep-th/0201007 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl

[11] J.-M. Lévy-Leblond, “Galilei group and Galilean invariance”, Group Theory and Applications, V. II, ed. E. Loebl, Acad. Press, N.Y., 1971, 221 ; A. Ballesteros, N. Gadella, M. del Olmo, J. Math. Phys., 33 (1992), 3379 ; Y. Brihaye, C. Gonera, S. Giller, P. Kosiński, Galilean invariance in $2+1$ dimensions, ; D. R. Grigore, J. Math. Phys., 37 (1996), 240 ; 460 E-print hep-th/9503046 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[12] L. Susskind, The quantum Hall fliud and non-commutative Chern–Simons theory, E-print hep-th/0101029

[13] G. S. Lozano, E. F. Moreno, F. A. Schaposnik, JHEP, 02 (2001), 036 ; ; F. A. Schaposnik, Three lectures on noncommutative field theories, E-print hep-th/0012266E-print hep-th/0408132 | DOI | MR

[14] D. Bak, S. K. Kim, K.-S. Soh, J. H. Yee, Phys. Rev. D, 64 (2001), 025018 | DOI

[15] D. Bak, K. Lee, J.-H. Park, Phys. Rev. Lett., 87 (2001), 030402 | DOI | MR

[16] D. Bak, S. K. Kim, K.-S. Soh, J. H. Yee, Phys. Rev. Lett., 85 (2000), 3087 | DOI | MR

[17] P. A. Horváthy, L. Martina, P. C. Stichel, Phys. Lett. B, 564 (2003), 149 | DOI | MR | Zbl

[18] P. A. Horváthy, L. Martina, P. C. Stichel, Nucl. Phys. B, 673 (2003), 301 | DOI | MR | Zbl

[19] P. A. Horváthy, P. C. Stichel, Phys. Lett. B, 583 (2004), 353 | DOI | MR | Zbl

[20] L. Hadasz, U. Lindstrom, M. Rocek, R. von Unge, Phys. Rev. D, 69 (2004), 105020 | DOI | MR

[21] R. Jackiw, Phys. Today, 25 (1980), 23 ; U. Niederer, Helv. Phys. Acta, 45 (1972), 802 ; C. R. Hagen, Phys. Rev. D, 5 (1972), 377 | DOI | MR | DOI

[22] E. Langmann, R. J. Szabo, Phys. Lett. B, 533 (2002), 168 ; E. Langmann, Nucl. Phys. B, 654 (2003), 404 ; E. Langmann, R. J. Szabo, K. Zarembo, Exact solution of noncommutative filed theory in background magnetic filed, E-print hep-th/0303082 | DOI | MR | Zbl | DOI | MR | Zbl

[23] N. Seiberg, E. Witten, JHEP, 09 (1999), 032 | DOI | MR | Zbl

[24] R. Jackiw, S.-Y. Pi, Phys. Rev. Lett., 88 (2002), 1116031 | DOI | MR