Statistical Approach to Modulational Instability in Nonlinear Discrete Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 56-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a statistical approach to investigate the modulational instability (Benjamin–Feir instability) in several nonlinear discrete systems: the discrete nonlinear Schrodinger (NLS) equation, the Ablowitz–Ladik equation, and the discrete deformable NLS equation. We derive a kinetic equation for the two-point correlation function and use a Wigner–Moyal transformation to write it in a mixed space-wave-number representation. We perform a linear stability analysis of the resulting equation and discuss the obtained integral stability condition using several forms of the initial unperturbed spectrum (Lorentzian and $\delta$-spectrum). We compare the results with the continuum limit (the NLS equation) and with previous results.
Keywords: modulational instability – nonlinear discrete systems.
@article{TMF_2005_144_1_a5,
     author = {D. Grecu and A. Visinescu},
     title = {Statistical {Approach} to {Modulational} {Instability} in {Nonlinear} {Discrete} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {56--63},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a5/}
}
TY  - JOUR
AU  - D. Grecu
AU  - A. Visinescu
TI  - Statistical Approach to Modulational Instability in Nonlinear Discrete Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 56
EP  - 63
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a5/
LA  - ru
ID  - TMF_2005_144_1_a5
ER  - 
%0 Journal Article
%A D. Grecu
%A A. Visinescu
%T Statistical Approach to Modulational Instability in Nonlinear Discrete Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 56-63
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a5/
%G ru
%F TMF_2005_144_1_a5
D. Grecu; A. Visinescu. Statistical Approach to Modulational Instability in Nonlinear Discrete Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 56-63. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a5/

[1] Y. S. Kivshar, M. Salerno, Phys. Rev. E, 49 (1994), 3543 | DOI | MR

[2] F. Kh. Abdulaev, S. A. Darmanyan, J. Garnier, Progress in Optics, 44, 2002, 303 | DOI

[3] I. E. Alber, Proc. Roy. Soc. London A, 363 (1978), 525 ; R. Fedele, P. K. Shukla, M. Onorato, D. Anderson, M. Lisak, Phys. Lett. A, 303 (2002), 61 ; M. Onorato, A. Osborne, R. Fedele, M. Serio, Phys. Rev. E, 67 (2003), 046305 | DOI | MR | Zbl | DOI | MR | DOI

[4] Anca Visinescu, D. Grecu, Eur. Phys. J. B, 34 (2003), 225–229 | DOI

[5] D. Grecu, A. Visinescu, “Modulational instability of some nonlinear nuclear continuum and discrete models”, Nonlinaer Waves: Classical and Quantum Aspects, Proc. NATO Adv. Research Workshop (Estoril, Portugal, 13–17 July 2003), NATO Sci. Ser. II Math. Phys. Chem., 153, eds. F. Kh. Abdulaev, V. V. Konotop, Kluwer, Dordrecht, 2004, 151 | DOI | MR | Zbl

[6] D. Grecu, A. Visinescu, “Modulational instability of some nonlinear continuum and discrete systems”, Global Analysis and Applied Mathematics, Proc. of the Int. Workshop on Global Analysis (Ankara, Turkey, 15–17 April 2004), Ser. AIP Conf. Proc., 729, eds. K. Tas, D. Baleanu, D. Krupka, O. Krupkova, AIP, N.Y., 2004, 389 | DOI | MR | Zbl