Statistical Approach to Modulational Instability in Nonlinear Discrete Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 56-63
Voir la notice de l'article provenant de la source Math-Net.Ru
We use a statistical approach to investigate the modulational instability (Benjamin–Feir instability) in several nonlinear discrete systems: the discrete nonlinear Schrodinger (NLS) equation, the Ablowitz–Ladik equation, and the discrete deformable NLS equation. We derive a kinetic equation for the two-point correlation function and use a Wigner–Moyal transformation to write it in a mixed space-wave-number representation. We perform a linear stability analysis of the resulting equation and discuss the obtained integral stability condition using several forms of the initial unperturbed spectrum (Lorentzian and $\delta$-spectrum). We compare the results with the continuum limit (the NLS equation) and with previous results.
Keywords:
modulational instability – nonlinear discrete systems.
@article{TMF_2005_144_1_a5,
author = {D. Grecu and A. Visinescu},
title = {Statistical {Approach} to {Modulational} {Instability} in {Nonlinear} {Discrete} {Systems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {56--63},
publisher = {mathdoc},
volume = {144},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a5/}
}
TY - JOUR AU - D. Grecu AU - A. Visinescu TI - Statistical Approach to Modulational Instability in Nonlinear Discrete Systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 56 EP - 63 VL - 144 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a5/ LA - ru ID - TMF_2005_144_1_a5 ER -
D. Grecu; A. Visinescu. Statistical Approach to Modulational Instability in Nonlinear Discrete Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 56-63. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a5/