Classification of Integrable $(2+1)$-Dimensional Quasilinear Hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 35-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the $(2+1)$-dimensional hierarchies associated with the integrable PDEs of the form $\Omega_{tt}=F(\Omega_{xx},\Omega_{xt},\Omega_{xy})$, which generalize the dispersionless KP hierarchy. Integrability is understood as the existence of infinitely many hydrodynamic reductions.
Keywords: integrable hierachies of dKP type, hydrodynamic reductions, pseudopotentials.
@article{TMF_2005_144_1_a3,
     author = {E. V. Ferapontov and K. R. Khusnutdinova and M. V. Pavlov},
     title = {Classification of {Integrable} $(2+1)${-Dimensional} {Quasilinear} {Hierarchies}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {35--43},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a3/}
}
TY  - JOUR
AU  - E. V. Ferapontov
AU  - K. R. Khusnutdinova
AU  - M. V. Pavlov
TI  - Classification of Integrable $(2+1)$-Dimensional Quasilinear Hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 35
EP  - 43
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a3/
LA  - ru
ID  - TMF_2005_144_1_a3
ER  - 
%0 Journal Article
%A E. V. Ferapontov
%A K. R. Khusnutdinova
%A M. V. Pavlov
%T Classification of Integrable $(2+1)$-Dimensional Quasilinear Hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 35-43
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a3/
%G ru
%F TMF_2005_144_1_a3
E. V. Ferapontov; K. R. Khusnutdinova; M. V. Pavlov. Classification of Integrable $(2+1)$-Dimensional Quasilinear Hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a3/

[1] I. Krichever, A. Marshakov, A. Zabrodin, Integrable structure of the Dirichlet boundary problem in multiply-connected domains, E-print hep-th/0309010 | MR

[2] M. V. Pavlov, UMN, 58:2 (2003), 171–172 ; ТМФ, 138 (2004) ; ТМФ, {138}:1 (2004), 55–70 | DOI | MR | Zbl | Zbl | DOI | MR | Zbl

[3] V. M. Bukhshtaber, D. V. Leikin, M. V. Pavlov, Funkts. analiz i ego prilozh., 37 (2003), 13–26 | DOI | MR | Zbl

[4] J. Gibbons, S. P. Tsarev, Phys. Lett. A, {211} (1996), 19–24 ; {258} (1999), 263–270 | DOI | MR | Zbl | DOI | MR

[5] R. Carroll, Yu. Kodama, J. Phys. A, {28} (1995), 6373–6387 | DOI | MR | Zbl

[6] E. V. Ferapontov, K. R. Khusnutdinova, Commun. Math. Phys., 248 (2004), 187–206 | DOI | MR | Zbl

[7] M. Manas, L. M. Alonso, E. Medina, J. Phys. A, 35 (2002), 401–417 | DOI | MR | Zbl

[8] J. Chazy, C. R Acad. Sc. Paris, 150 (1910), 456–458 | Zbl

[9] M. A. Abramovits, I. A. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Mir, M., 1979 | MR

[10] E. V. Zakharov, “Dispersionless limit of integrable systems in $2+1$ dimensions”, Singular Limits of Dispersive Waves, Proc. of a NATO Adv. Research Workshop (Lyon, France, July 8–12, 1991), NATO ASI Ser., Ser. B. Physics, 320, eds. N. M. Ercolani, I. R. Gabitov, C. D. Levermore, D. Serre, Plenum Press, N.Y., 1994, 165–174 | DOI | MR | Zbl

[11] S. P. Tsarev, DAN SSSR, 282 (1985), 534–537 ; Изв. АН СССР. Сер. матем., 54:5 (1990), 1048–1068 | MR | Zbl | MR | Zbl

[12] C. P. Boyer, J. D. Finley, J. Math. Phys., 23 (1982), 1126–1130 | DOI | MR | Zbl