Dirac-Type Operators on Curved Spaces and the Role of Killing–Yano Tensors
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 199-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Dirac equation in curved backgrounds and investigate the role of Killing–Yano tensors in constructing Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub–NUT space. We investigate the gravitational anomalies for generalized Euclidean Taub–NUT metrics that admit hidden symmetries analogous to the Runge–Lenz vector of the Kepler-type problem.
Keywords: Dirac operator, Killing–Yano tensors, hidden symmetries.
Mots-clés : Taub–NUT space
@article{TMF_2005_144_1_a20,
     author = {M. Visinescu},
     title = {Dirac-Type {Operators} on {Curved} {Spaces} and the {Role} of {Killing{\textendash}Yano} {Tensors}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {199--208},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a20/}
}
TY  - JOUR
AU  - M. Visinescu
TI  - Dirac-Type Operators on Curved Spaces and the Role of Killing–Yano Tensors
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 199
EP  - 208
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a20/
LA  - ru
ID  - TMF_2005_144_1_a20
ER  - 
%0 Journal Article
%A M. Visinescu
%T Dirac-Type Operators on Curved Spaces and the Role of Killing–Yano Tensors
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 199-208
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a20/
%G ru
%F TMF_2005_144_1_a20
M. Visinescu. Dirac-Type Operators on Curved Spaces and the Role of Killing–Yano Tensors. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 199-208. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a20/

[1] F. A. Berezin, M. S. Marinov, Ann. Phys., 104 (1977), 336 | DOI | Zbl

[2] G. W. Gibbons, R. H. Rietdijk, J. W. van Holten, Nucl. Phys. B, 404 (1993), 42 | DOI | MR | Zbl

[3] B. Carter, R. G. McLenaghan, Phys. Rev. D, 19 (1979), 1093 | DOI | MR

[4] G. W. Gibbons, P. J. Ruback, Commun. Math. Phys., 115 (1988), 267 ; G. W. Gibbons, N. S. Manton, Nucl. Phys. B, 274 (1986), 183 | DOI | MR | Zbl | DOI | MR

[5] D. Vaman, M. Visinescu, Phys. Rev. D, 54 (1996), 1398 | DOI | MR

[6] D. Vaman, M. Visinescu, Fortschr. Phys., 47 (1999), 493 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] I. I. Cotăescu, M. Visinescu, Phys. Lett. B, 502 (2001), 229 | DOI | MR | Zbl

[8] I. I. Cotăescu, M. Visinescu, J. Math. Phys., 43 (2002), 2978 | DOI | MR | Zbl

[9] I. I. Cotăescu, M. Visinescu, Class. Q Grav., 18 (2001), 3383 | DOI | MR | Zbl

[10] I. I. Cotăescu, M. Visinescu, Class. Q Grav., 21 (2004), 11 | DOI | MR | Zbl

[11] B. Carter, Phys. Rev. D, 16 (1977), 3395 ; R. G. McLenaghan, Ph. Spindel, Phys. Rev. D, 20 (1979), 409 | DOI | MR | DOI | MR

[12] M. Cariglia, Class. Q Grav., 21 (2004), 1051 | DOI | MR | Zbl

[13] H. Römer, B. Schroer, Phys. Lett. B, 71 (1977), 182 ; C. N. Pope, Nucl. Phys. B, 141 (1978), 432 ; T. Eguchi, P. B. Gilkey, A. J. Hanson, Phys. Rev. D, 17 (1978), 423 ; K. Peeters, A. Waldron, JHEP, 992 (1999), 024 | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[14] T. Iwai, N. Katayama, J. Geom. Phys., 12 (1993), 55 | DOI | MR | Zbl

[15] T. Iwai, N. Katayama, J. Math. Phys., 35 (1994), 2914 ; J. Phys. A, 27 (1994), 3179 ; Y. Miyake, Osaka J. Math., 32 (1995), 659 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[16] M. Visinescu, J. Phys. A, 33 (2000), 4383 ; I. I. Cotăescu, M. Visinescu, J. Phys. A, 34 (2001), 6459 | DOI | MR | Zbl | DOI | MR | Zbl

[17] I. I. Cotăescu, S. Moroianu, M. Visinescu, Gravitational and axial anomalies for generalized Euclidean Taub–NUT metrics, E-print math-ph/0411047