Inhomogeneous Current States in a Gauged Two-Component Ginzburg–Landau Model
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 182-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the energy bounds of inhomogeneous current states in doped antiferromagnetic insulators in the framework of the two-component Ginzburg–Landau model. Using the formulation of this model in terms of the gauge-invariant order parameters (the unit vector $\bold n$, spin stiffness field $\rho^{2}$, and particle momentum $\bold c$), we show that this strongly correlated electron system involves a geometric small parameter that determines the degree of packing in the knots of filament manifolds of the order parameter distributions for the spin and charge degrees of freedom. We find that as the doping degree decreases, the filament density increases, resulting in a transition to an inhomogeneous current state with a free energy gain.
Keywords: current state, knot of order parameter distribution, Hopf invariant.
@article{TMF_2005_144_1_a18,
     author = {A. P. Protogenov and V. A. Verbus},
     title = {Inhomogeneous {Current} {States} in a {Gauged} {Two-Component} {Ginzburg{\textendash}Landau} {Model}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {182--189},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a18/}
}
TY  - JOUR
AU  - A. P. Protogenov
AU  - V. A. Verbus
TI  - Inhomogeneous Current States in a Gauged Two-Component Ginzburg–Landau Model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 182
EP  - 189
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a18/
LA  - ru
ID  - TMF_2005_144_1_a18
ER  - 
%0 Journal Article
%A A. P. Protogenov
%A V. A. Verbus
%T Inhomogeneous Current States in a Gauged Two-Component Ginzburg–Landau Model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 182-189
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a18/
%G ru
%F TMF_2005_144_1_a18
A. P. Protogenov; V. A. Verbus. Inhomogeneous Current States in a Gauged Two-Component Ginzburg–Landau Model. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 182-189. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a18/

[1] B. Lake, G. Aeppli, K. N. Clausen, Science, 291 (2001), 1759 | DOI

[2] B. Lake, H. M. Ronnow, N. B. Christensen, Nature, 415 (2002), 299 | DOI

[3] J. E. Hoffman, E. W. Hudson, K. M. Lang, Science, 295 (2002), 466 | DOI

[4] S. H. Pan, J. P. O'Neal, R. L. Badzey et al., Nature, 413 (2001), 282 | DOI

[5] S. J. L. Billinge, E. S. Bozin, M. Gutmann, H. Takagi, Microscopic charge inhomogeneities in underdoped $La_2-xSr_xCu O_4$: Local structural evidence, E-print cond-mat/0005032

[6] S. Caprara, C. Castellani, C. Di Castro, M. Grilli, A. Perali, Charge and spin inhomogeneity as a key to the physics of the high $T_c$ cuprates, E-print cond-mat/9907265

[7] J. E. Hirsch, Electron-hole asymmetry is the key to superconductivity, E-print cond-mat/0301610 | MR

[8] M. Z. Hasan, Y. Li, D. Qian, Y.-D. Chuang, H. Eisaki, S. Uchida, Y. Kaga, T. Sasagawa, H. Takagi, Asymmetries in the electron-hole pair dynamics and strong Mott pseudogap effect in the phase diagram of cuprates, E-print cond-mat/0406654

[9] L. D. Faddeev, A. J. Niemi, Phys. Rev. Lett., 82 (1999), 1624 | DOI | MR | Zbl

[10] L. D. Faddeev, A. J. Niemi, Phys. Rev. Lett., 85 (2000), 3416 | DOI | MR

[11] Y. M. Cho, Phys. Rev. Lett., 87 (2001), 252001 ; E-print hep-th/0110076 | DOI | MR

[12] E. Babaev, L. D. Faddeev, A. J. Niemi, Phys. Rev. B, 65 (2002), 100512 | DOI

[13] B. A. Volkov, V. L. Ginzburg, Yu. V. Kopaev, Pisma v ZhETF, 27 (1978), 221

[14] L. S. Isaev, A. P. Protogenov, ZhETF, 123 (2003), 1297

[15] P. Voruganti, S. Doniach, Phys. Rev. B, 41 (1990), 9358 | DOI

[16] L. B. Ioffe, P. B. Wiegmann, Phys. Rev. Lett., 65 (1990), 653 | DOI

[17] L. S. Isaev, A. P. Protogenov, Phys. Rev. B, 69 (2004), 012401 | DOI

[18] A. P. Protogenov, V. A. Verbus, Pisma v ZhETF, 76 (2002), 60 ; A. P. Protogenov, Charge density bounds in superconducting states of strongly correlated systems, E-print cond-mat/0205133

[19] V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Chapt. 3, Appl. Math. Sci., 125, Springer, N.Y., 1998 | MR

[20] A. F. Vakulenko, L. V. Kapitanskii, DAN SSSR, 246 (1979), 840 | MR | Zbl

[21] B. A. Volkov, A. A. Gorbatsevich, Yu. V. Kopaev, V. V. Tugushev, ZhETF, 81 (1981), 729

[22] B. A. Volkov, A. A. Gorbatsevich, Yu. V. Kopaev, ZhETF, 86 (1984), 1870

[23] P. A. Lee, N. Nagaosa, T.-K. Ng, X.-G. Wen, Phys. Rev. B, 57 (1998), 6003 | DOI

[24] L. D. Faddeev, A. J. Niemi, Nature, 387 (1997), 58 | DOI

[25] V. M. H. Ruutu, U. Parts, J. H. Koivuniemi, M. Krusius, E. V. Thuneberg, G. E. Volovik, Pisma v ZhETF, 60 (1994), 659

[26] Yu. G. Makhlin, T. Sh. Misirpashaev, Pisma v ZhETF, 61 (1995), 48

[27] J. Gladikowski, M. Hellmund, Phys. Rev. D, 56 (1997), 5194 | DOI | MR

[28] R. A. Battye, P. M. Sutcliffe, Phys. Rev. Lett., 81 (1998), 4798 | DOI | MR | Zbl

[29] J. Hietarinta, P. Salo, Phys. Lett. B, 451 (1999), 60 | DOI | MR | Zbl

[30] R. S. Ward, Nonlinearity, 12 (1999), 1 ; E-print hep-th/9811176 | DOI | MR

[31] R. Metzler, A. Hanke, P. G. Dommersnes, Y. Kantor, M. Kardar, Equilibrium shapes of flat knots, E-print cond-mat/0110266

[32] S. Chakravarty, H.-Y. Kee, E. Abrahams, Condensation energy and the mechanism of superconductivity, E-print cond-mat/0211613

[33] W. V. Liu, F. Wilczek, Phys. Rev. Lett., 90 (2003), 047002 | DOI

[34] Y. Kohsaka, T. Hanaguri, K. Kitazawa et al., Physica C, 388 (2003), 283 ; Y. Kohsaka, K. Iwaya, S. Satow et al., Phys. Rev. Lett., 93 (2004), 097004 | DOI | DOI

[35] A. I. Larkin, Yu. N. Ovchinnikov, ZhETF, 47 (1964), 1136

[36] P. Fulde, R. A. Ferrel, Phys. Rev., 135 (1964), A550 | DOI

[37] V. F. Gantmakher, Elektrony v neuporyadochennykh sredakh, Fizmatlit, M., 2003

[38] G. Sierra, Nucl. Phys. B, 572 [FS] (2000), 517 ; E-print hep-th/0111114 | DOI | MR | Zbl