Interaction of Vortical and Acoustic Waves: From General Equations to Integrable Cases
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 171-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equations of the $(2+1)$-dimensional boundary-layer perturbation split into eigenmodes: a vortex wave and two acoustic waves. We assume that the equations of state (Taylor series approximation) are arbitrary. We realize a mode definition via local-relation equations extracted from the linearization of the general system over the boundary-layer flow. Each such link determines an invariant subspace and the corresponding projector. We examine the nonlinear equation for a vortex wave using a special orthogonal coordinate system based on streamlines. The equations for the orthogonal curves are linked to the Laplace equations via Laplace and Moutard transformations. The nonlinearity determines the proper form of the interaction between vortical and acoustic boundary-layer perturbation fields fixed by projecting to a subspace of the Orr–Sommerfeld equation solutions for the Tollmienn–Schlichting (linear vortical) wave and by the corresponding procedure for the acoustic wave. We suggest a new mechanism for controlling the nonlinear resonance of the Tollmienn–Schlichting wave by sound via a four-wave interaction.
Keywords: fluid mechanics, boundary layer, projecting to eigenmodes, Tollmienn–Schlichting waves, acoustic waves, $N$-wave system.
Mots-clés : Laplace transformation, Moutard transformation
@article{TMF_2005_144_1_a17,
     author = {A. A. Perelomova and S. B. Leble},
     title = {Interaction of {Vortical} and {Acoustic} {Waves:} {From} {General} {Equations} to {Integrable} {Cases}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {171--181},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a17/}
}
TY  - JOUR
AU  - A. A. Perelomova
AU  - S. B. Leble
TI  - Interaction of Vortical and Acoustic Waves: From General Equations to Integrable Cases
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 171
EP  - 181
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a17/
LA  - ru
ID  - TMF_2005_144_1_a17
ER  - 
%0 Journal Article
%A A. A. Perelomova
%A S. B. Leble
%T Interaction of Vortical and Acoustic Waves: From General Equations to Integrable Cases
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 171-181
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a17/
%G ru
%F TMF_2005_144_1_a17
A. A. Perelomova; S. B. Leble. Interaction of Vortical and Acoustic Waves: From General Equations to Integrable Cases. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 171-181. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a17/

[1] S. B. Leble, Nonlinear Waves in Waveguides, Springer, Berlin, 1991

[2] B.-T. Chu, L. S. G. Kovasznay, J. Fluid Mech., 3 (1958), 494 | DOI | MR

[3] X. Wu, J. Fluid Mech., 431 (2001), 91 | DOI

[4] A. I. Ruban, Izv. AN SSSR. Mekh. zhidk. i gaza, 1984, no. 5, 44 ; Fluid Dyn., 19 (1985), 709 | Zbl | DOI | MR

[5] A. A. Perelomova, Appl. Math. Lett., 13 (2000), 93 ; Acta Acustica, 84 (1998), 1002 | DOI | MR | Zbl

[6] S. Leble, A. Perelomova, “Tollmienn–Schlichting and sound waves interaction: nonlinear resonances”, Nonlinear acoustics at the beginning of the 21th century, 16th Int. Symp. on Nonlinear Acoustics, eds. O. Rudenko, O. Sapozhnikov, MGU, M., 2002, 203

[7] S. V. Leble, I. Yu. Popov, Yu. V. Gugel, Gidromekhanika, 1993, no. 67, 3 | MR

[8] E. I. Ganzha, Kaskadnyi metod Laplasa, Izd-vo Krasnoyarskogo pedagogicheskogo un-ta, Krasnoyarsk, 2000

[9] C. Athorne, J. J. C. Nimmo, Inverse Problems, 7 (1991), 809 | DOI | MR | Zbl

[10] S. Leble, A. Yurov, J. Math. Phys., 43 (2002), 1095 | DOI | MR | Zbl

[11] S. Leble, TMF, 122:2 (2000), 239 | DOI | MR | Zbl