Interaction of Vortical and Acoustic Waves: From General Equations to Integrable Cases
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 171-181
Voir la notice de l'article provenant de la source Math-Net.Ru
The equations of the $(2+1)$-dimensional boundary-layer perturbation split into eigenmodes: a vortex wave and two acoustic waves. We assume that the equations of state (Taylor series approximation) are arbitrary. We realize a mode definition via local-relation equations extracted from the linearization of the general system over the boundary-layer flow. Each such link determines an invariant subspace and the corresponding projector. We examine the nonlinear equation for a vortex wave using a special orthogonal coordinate system based on streamlines. The equations for the orthogonal curves are linked to the Laplace equations via Laplace and Moutard transformations. The nonlinearity determines the proper form of the interaction between vortical and acoustic boundary-layer perturbation fields fixed by projecting to a subspace of the Orr–Sommerfeld equation solutions for the Tollmienn–Schlichting (linear vortical) wave and by the corresponding procedure for the acoustic wave. We suggest a new mechanism for controlling the nonlinear resonance of the Tollmienn–Schlichting wave by sound via a four-wave interaction.
Keywords:
fluid mechanics, boundary layer, projecting to eigenmodes, Tollmienn–Schlichting waves, acoustic waves, $N$-wave system.
Mots-clés : Laplace transformation, Moutard transformation
Mots-clés : Laplace transformation, Moutard transformation
@article{TMF_2005_144_1_a17,
author = {A. A. Perelomova and S. B. Leble},
title = {Interaction of {Vortical} and {Acoustic} {Waves:} {From} {General} {Equations} to {Integrable} {Cases}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {171--181},
publisher = {mathdoc},
volume = {144},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a17/}
}
TY - JOUR AU - A. A. Perelomova AU - S. B. Leble TI - Interaction of Vortical and Acoustic Waves: From General Equations to Integrable Cases JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 171 EP - 181 VL - 144 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a17/ LA - ru ID - TMF_2005_144_1_a17 ER -
%0 Journal Article %A A. A. Perelomova %A S. B. Leble %T Interaction of Vortical and Acoustic Waves: From General Equations to Integrable Cases %J Teoretičeskaâ i matematičeskaâ fizika %D 2005 %P 171-181 %V 144 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a17/ %G ru %F TMF_2005_144_1_a17
A. A. Perelomova; S. B. Leble. Interaction of Vortical and Acoustic Waves: From General Equations to Integrable Cases. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 171-181. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a17/