Degenerate Four-Virtual-Soliton Resonance for the KP-II
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 162-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for solving the $(2+1)$-dimensional Kadomtsev–Petviashvili equation with negative dispersion (KP-II) using the second and third members of the disipative version of the AKNS hierarchy. We show that dissipative solitons (dissipatons) of those members yield the planar solitons of the KP-II. From the Hirota bilinear form of the $SL(2,\mathbb R)$ AKNS flows, we formulate a new bilinear representation for the KP-II, by which we construct one- and two-soliton solutions and study the resonance character of their mutual interactions. Using our bilinear form, for the first time, we create a four-virtual-soliton resonance solution of the KP-II, and we show that it can be obtained as a reduction of a four-soliton solution in the Hirota–Satsuma bilinear form for the KP-II.
Mots-clés : dissipative soliton, reaction-diffusion system.
Keywords: Ablowitz–Kaup–Newell–Segur hierarchy, Kadomtsev–Petviashvili equation, Hirota method, soliton resonance
@article{TMF_2005_144_1_a16,
     author = {O. K. Pashaev and L. Y. Francisco},
     title = {Degenerate {Four-Virtual-Soliton} {Resonance} for the {KP-II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {162--170},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a16/}
}
TY  - JOUR
AU  - O. K. Pashaev
AU  - L. Y. Francisco
TI  - Degenerate Four-Virtual-Soliton Resonance for the KP-II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 162
EP  - 170
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a16/
LA  - ru
ID  - TMF_2005_144_1_a16
ER  - 
%0 Journal Article
%A O. K. Pashaev
%A L. Y. Francisco
%T Degenerate Four-Virtual-Soliton Resonance for the KP-II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 162-170
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a16/
%G ru
%F TMF_2005_144_1_a16
O. K. Pashaev; L. Y. Francisco. Degenerate Four-Virtual-Soliton Resonance for the KP-II. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 162-170. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a16/

[1] M. Ablowitz, D. Kaup, A. Newell, H. Segur, Stud. Appl. Math., 53 (1974), 249 | DOI | MR | Zbl

[2] L. Martina, O. K. Pashaev, G. Soliani, Class. Q Grav., 14 (1997), 3179 ; Phys. Rev. D, 58 (1998), 084025 | DOI | MR | Zbl | DOI | MR

[3] O. K. Pashaev, J.-H. Lee, Mod. Phys. Lett. A, 17:24 (2002), 1601 | DOI | Zbl

[4] B. Konopelchenko, W. Strampp, J. Math. Phys., 33 (1992), 3676 ; Y. Cheng, Y.-S. Li, J. Phys. A, 25 (1992), 419 ; C. Cao, Y. Wu, X. Geng, J. Math. Phys., 40:8 (1999), 3948 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[5] R. Khirota, “Pryamye metody v teorii solitonov”, Solitony, eds. R. Bullaf, F. Kodri, Mir, M., 1983, 175–192 | MR

[6] K. Ohkuma, M. Wadati, J. Phys. Soc. Japan, 52:3 (1983), 749 | DOI | MR

[7] E. Infeld, G. Rowlands, Nonlinear Waves, Solitons and Chaos, Camb. Univ. Press, Cambridge, 2000 | MR | Zbl

[8] G. Biondini, Y. Kodama, J. Phys. A, 36 (2003), 10519 ; Y. Kodama, Young diagrams and N-soliton solutions of the KP equation, E-print nlin.SI/0406033 | DOI | MR | Zbl

[9] Dzh-Kh. Li, O. K. Pashaev, TMF, 144:1 (2005), 133 | DOI | MR