Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in $(2+1)$ Dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 153-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve the Backlund problem for both the compact and noncompact versions of the Ishimori $(2+1)$-dimensional nonlinear spin model. In particular, we realize the arising Backlund algebra in the form of an infinite-dimensional loop Lie algebra of the Kac–Moody type.
Keywords: integrable systems, nonlinear spin models, Backlund transformations, Backlund–Cartan connections.
Mots-clés : prolongation algebras
@article{TMF_2005_144_1_a15,
     author = {M. Palese},
     title = {Backlund {Loop} {Algebras} for {Compact} and {Noncompact} {Nonlinear} {Spin} {Models} in $(2+1)$ {Dimensions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {153--161},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a15/}
}
TY  - JOUR
AU  - M. Palese
TI  - Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in $(2+1)$ Dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 153
EP  - 161
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a15/
LA  - ru
ID  - TMF_2005_144_1_a15
ER  - 
%0 Journal Article
%A M. Palese
%T Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in $(2+1)$ Dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 153-161
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a15/
%G ru
%F TMF_2005_144_1_a15
M. Palese. Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in $(2+1)$ Dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 153-161. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a15/

[1] H. D. Wahlquist, F. B. Estabrook, Phys. Rev. Lett., 31 (1973), 1386–1390 ; J. Math. Phys., 16 (1975), 1–7 ; R. Dodd, A. Fordy, Proc. Roy. Soc. London. Ser. A, 385 (1983), 389–429 ; A. P. Fordy, “Prolongation structures of nonlinear evolution equations”, Soliton theory: a survey of results, Nonlinear Sci. Theory Appl., ed. A. Fordy, Manchester Univ. Press, Manchester, 1990, 403–426 ; M. Palese, Prolongation structures of nonlinear field equations, Doctoral Thesis. University of Lecce, 1993 (Italian) | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | MR

[2] H. C. Morris, J. Math. Phys., 17 (1976), 1870–1872 | DOI | MR

[3] F. A. E. Pirani, D. C. Robinson, W. F. Shadwick, Local Jet Bundle Formulation of Bäcklund Transformations with Applications to Nonlinear Evolution Equations, Math. Phys. Stud., 1, Reidel, Dordrecht, 1979 | MR | Zbl

[4] G. S. Tondo, Lett. Nuovo Cimento, 44 (1985), 297–302 | DOI | MR

[5] E. Alfinito, M. Leo, R. A. Leo, M. Palese, G. Soliani, Lett. Math. Phys., 32 (1994), 241–248 | DOI | MR | Zbl

[6] E. Alfinito, M. Leo, R. A. Leo, M. Palese, G. Soliani, Phys. Lett. B, 352 (1995), 314–320 | DOI | MR

[7] M. Palese, R. A. Leo, G. Soliani, “The prolongation problem for the heavenly equation”, Recent Developments in General Relativity (Beri, 1998), eds. B. Casciaro et al., Springer, Milano, 2000, 337–344 ; E-print math.AP/0311218 | DOI | MR

[8] M. Palese, E. Winterroth, Phys. Lett. B, 532 (2002), 129–134 | DOI | MR | Zbl

[9] M. Palese, E. Winterroth, “On the geometry of Bäcklund transformations”, Nonlinear Physics: Theory and Experiment II, Proc. of the conference (Gallipoli, Italy, 2002), eds. M. J. Ablowitz et al., World Scientific, River Edge, NJ, 2003, 254–257 | DOI | MR | Zbl

[10] R. L. Anderson, N. H. Ibragimov, Lie–Bäcklund Transformations in Applications, SIAM, Philadelphia, 1979 | MR

[11] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[12] Y. Ishimori, Progr. Theor. Phys., 72:1 (1984), 33–37 | DOI | MR | Zbl

[13] R. A. Leo, L. Martina, G. Soliani, J. Math. Phys., 33:4 (1992), 1515–1522 | DOI | MR

[14] S. Kobayashi, Transformation Groups in Differential Geometry, Springer, Berlin, 1972 ; D. J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, Cambridge, 1989 | MR | MR | Zbl

[15] M. Lakshmanan, Phys. Lett. A, 61 (1977), 53–54 | DOI