Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in $(2+1)$ Dimensions
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 153-161
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We solve the Backlund problem for both the compact and noncompact versions of the Ishimori $(2+1)$-dimensional nonlinear spin model. In particular, we realize the arising Backlund algebra in the form of an infinite-dimensional loop Lie algebra of the Kac–Moody type.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
integrable systems, nonlinear spin models, Backlund transformations, Backlund–Cartan connections.
Mots-clés : prolongation algebras
                    
                  
                
                
                Mots-clés : prolongation algebras
@article{TMF_2005_144_1_a15,
     author = {M. Palese},
     title = {Backlund {Loop} {Algebras} for {Compact} and {Noncompact} {Nonlinear} {Spin} {Models} in $(2+1)$ {Dimensions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {153--161},
     publisher = {mathdoc},
     volume = {144},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a15/}
}
                      
                      
                    TY - JOUR AU - M. Palese TI - Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in $(2+1)$ Dimensions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 153 EP - 161 VL - 144 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a15/ LA - ru ID - TMF_2005_144_1_a15 ER -
M. Palese. Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in $(2+1)$ Dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 153-161. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a15/