Soliton Resonances for the MKP-II
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 133-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the second flow (derivative reaction-diffusion system) and the third one of the dissipative $SL(2,\mathbb R)$ Kaup–Newell hierarchy, we show that the product of two functions satisfying those systems is a solution of the modified Kadomtsev–Petviashvili equation in $2+1$ dimensions with negative dispersion (MKP-II). We construct Hirota's bilinear representations for both flows and combine them as the bilinear system for the MKP-II. Using this bilinear form, we find one- and two-soliton solutions for the MKP-II. For special values of the parameters, our solution shows resonance behavior with the creation of four virtual solitons. Our approach allows interpreting the resonance soliton as a composite object of two dissipative solitons in $1+1$ dimensions.
Keywords: soliton resonance, modified Kadomtsev–Petviashvili equation, Hirota method, derivative reaction-diffusion system.
Mots-clés : dissipative soliton
@article{TMF_2005_144_1_a13,
     author = {J.-H. Lee and O. K. Pashaev},
     title = {Soliton {Resonances} for the {MKP-II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {133--142},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a13/}
}
TY  - JOUR
AU  - J.-H. Lee
AU  - O. K. Pashaev
TI  - Soliton Resonances for the MKP-II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 133
EP  - 142
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a13/
LA  - ru
ID  - TMF_2005_144_1_a13
ER  - 
%0 Journal Article
%A J.-H. Lee
%A O. K. Pashaev
%T Soliton Resonances for the MKP-II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 133-142
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a13/
%G ru
%F TMF_2005_144_1_a13
J.-H. Lee; O. K. Pashaev. Soliton Resonances for the MKP-II. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 133-142. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a13/

[1] R. Jackiw, “Liouville field theory: a two-dimensional model for gravity”, Quantum Theory of Gravity, Essays in Honour of B. De Witt, ed. S. Christensen, Hilger, Bristol, 1984, 403 | MR

[2] L. Martina, O. K. Pashaev, G. Soliani, Class. Q Grav., 14 (1997), 3179 ; Phys. Rev. D, 58 (1998), 084025 | DOI | MR | Zbl | DOI | MR

[3] O. K. Pashaev, J.-H. Lee, Mod. Phys. Lett. A, 17 (2002), 1601 | DOI | Zbl

[4] O. K. Pashaev, M. L. Frantsisko, “Degenerate Four Virtual Soliton Resonance for KP-II”, TMF, 144:1 (2005), 162 | DOI | MR | Zbl

[5] J.-H. Lee, C.-K. Lin, O. K. Pashaev, “Equivalence relation and Bilinear representation for derivative NLS type equations”, Proc. of the Workshop on Nolinearity, Integrability and All That: Twenty Years after NEEDS'79 (Lecce, Italy, July 1–10, 1999), eds. M. Boiti, L. Martina, F. Pempinelly, B. Prinary, G. Soliani, World Scientific, Singapore, 2000, 175 | DOI | MR | Zbl

[6] O. K. Pashaev, J.-H. Lee, ANZIAM, 44 (2002), 73 | DOI | MR | Zbl

[7] Z. Yan, Chaos, Solitons and Fractals, 14 (2002), 45 | DOI | MR

[8] J.-H. Lee, Trans. Am. Math. Soc., 314(1) (1989), 107 | DOI | MR | Zbl

[9] B. Konopelchenko, W. Strampp, J. Math. Phys., 33 (1992), 3676 | DOI | MR | Zbl

[10] Y. Cheng, Y.-S. Li, J. Phys. A, 25 (1992), 419 | DOI | MR | Zbl