Light Propagation in a Cole-Cole Nonlinear Medium via the Burgers–Hopf Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 102-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new model of light propagation through a so-called weakly three-dimensional Cole-Cole nonlinear medium with short-range nonlocality was recently proposed. In particular, it was shown that in the geometric optics limit, the model is integrable and is governed by the dispersionless Veselov–Novikov (dVN) equation. The Burgers–Hopf equation can be obtained as a ($1+1$)-dimensional reduction of the dVN equation. We discuss its properties in the specific context of nonlinear geometric optics and consider an illustrative explicit example.
Keywords: nonlinear optics, integrable systems.
@article{TMF_2005_144_1_a10,
     author = {B. G. Konopelchenko and A. Moro},
     title = {Light {Propagation} in a {Cole-Cole} {Nonlinear} {Medium} via the {Burgers{\textendash}Hopf} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--109},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a10/}
}
TY  - JOUR
AU  - B. G. Konopelchenko
AU  - A. Moro
TI  - Light Propagation in a Cole-Cole Nonlinear Medium via the Burgers–Hopf Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 102
EP  - 109
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a10/
LA  - ru
ID  - TMF_2005_144_1_a10
ER  - 
%0 Journal Article
%A B. G. Konopelchenko
%A A. Moro
%T Light Propagation in a Cole-Cole Nonlinear Medium via the Burgers–Hopf Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 102-109
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a10/
%G ru
%F TMF_2005_144_1_a10
B. G. Konopelchenko; A. Moro. Light Propagation in a Cole-Cole Nonlinear Medium via the Burgers–Hopf Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 102-109. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a10/

[1] I. K. Kostov, I. Krichever, M. Mineev-Weinstein, P. B. Wiegmann, A. V. Zabrodin, “The $\tau$-function for analytic curves”, Random Matrix Models and Their Applications, Math. Sci. Res. Inst. Publ., 40, eds. P. Bleher, A. Its, Cambridge Univ. Press, Cambridge, 2001, 285–299 ; M. Mineev-Weinstein, P. B. Wiegmann, A. V. Zabrodin, Phys. Rev. Lett., 84:22 (2000), 5106–5109 ; P. B. Wiegmann, A. V. Zabrodin, Commun. Math. Phys., 213 (2000), 523–538 ; I. Krichever, M. Mineev-Weinstein, P. B. Wiegmann, A. V. Zabrodin, Physica D, 198 (2004), 1–28 ; ; Commun. Math. Phys., 143 (1992), 415–429 ; Commun. Pure Appl. Math., 47 (1994), 437–475 ; B. A. Dubrovin, Commun. Math. Phys., 145 (1992), 195–207 ; Nucl. Phys. B, 379 (1992), 627–689 E-print nlin.SI/0311005 | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[2] B. G. Konopelchenko, A. Moro, J. Phys. A, 37 (2004), L105–L111 | DOI | MR | Zbl

[3] B. G. Kononopelchenko, A. Moro, Stud. Appl. Math., 113 (2004), 325–352 ; E-print nlin.SI/0403051 | DOI | MR

[4] P. D. Lax, C. D. Levermore, Commun. Pure Appl. Math., 36 (1983), 253–290 ; 571–593 ; 809–830 ; B. G. Konopelchenko, L. Martinez Alonso, Phys. Lett. A, 286 (2001), 161–166 ; B. G. Konopelchenko, L. Martinez Alonso, J. Math. Phys., 43:7 (2002), 3807–3823 ; J. Phys. A, 37 (2004), 7859–7877 ; E-print nlin.SI/0403052 | DOI | MR | Zbl | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[5] L. Bogdanov, B. G. Konopelchenko, Phys. Lett. A, 330 (2004), 448–459 ; E-print nlin.SI/0312013.SI | DOI | MR | Zbl

[6] L. V. Bogdanov, B. G. Konopelchenko, A. Moro, Fund. prikl. matem., 10 (2004), 5–15 ; E-print nlin.SI/0406023 | MR | Zbl

[7] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR

[8] Y. Kodama, B. G. Konopelchenko, J. Phys. A, 35 (2002), L489–L500 | DOI | MR | Zbl

[9] M. Born, E. Wolf, Principles of Optics, Pergamon Press, Oxford, 1980 | MR