Completeness of the Cubic and Quartic Henon–Heiles Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 14-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quartic Henon–Heiles Hamiltonian passes the Painleve test for only four sets of values of the constants. Only one of these, identical to the traveling-wave reduction of the Manakov system, has been explicitly integrated (Wojciechowski, 1985), while the other three have not yet been integrated in the general case $(\alpha,\beta,\gamma)\neq(0,0,0)$. We integrate them by building a birational transformation to two fourth-order first-degree equations in the Cosgrove classiffication of polynomial equations that have the Painleve property. This transformation involves the stationary reduction of various partial differential equations. The result is the same as for the three cubic Henon–Heiles Hamiltonians, namely, a general solution that is meromorphic and hyperelliptic with genus two in all four quartic cases. As a consequence, no additional autonomous term can be added to either the cubic or the quartic Hamiltonians without destroying the Painleve integrability (the completeness property).
Keywords: Henon–Heiles Hamiltonian, Painleve property
Mots-clés : hyperelliptic separation of variables.
@article{TMF_2005_144_1_a1,
     author = {R. Conte and M. Musette and C. Verhoeven},
     title = {Completeness of the {Cubic} and {Quartic} {Henon{\textendash}Heiles} {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {14--25},
     year = {2005},
     volume = {144},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a1/}
}
TY  - JOUR
AU  - R. Conte
AU  - M. Musette
AU  - C. Verhoeven
TI  - Completeness of the Cubic and Quartic Henon–Heiles Hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 14
EP  - 25
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a1/
LA  - ru
ID  - TMF_2005_144_1_a1
ER  - 
%0 Journal Article
%A R. Conte
%A M. Musette
%A C. Verhoeven
%T Completeness of the Cubic and Quartic Henon–Heiles Hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 14-25
%V 144
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a1/
%G ru
%F TMF_2005_144_1_a1
R. Conte; M. Musette; C. Verhoeven. Completeness of the Cubic and Quartic Henon–Heiles Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 14-25. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a1/

[1] M. Hénon, C. Heiles, Astron. J., 69 (1964), 73–79 | DOI | MR

[2] R. Conte, M. Musette, C. Verhoeven, J. Nonlinear Math. Phys. Suppl., 12:1 (2005), 212–227 | DOI | MR

[3] C. M. Cosgrove, Stud. Appl. Math., 104 (2000), 1–65 | DOI | MR | Zbl

[4] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[5] R. Conte, “The Painlevé approach to nonlinear ordinary differential equations”, The Painlevé Property. One Century Later (Cargèse School, 3–22 June 1996), CRM Series in Mathematical Physics, ed. R. Conte, Springer, N.Y., 1999, 77–180 ; E-print solv-int/9710020 | MR

[6] Y. F. Chang, M. Tabor, J. Weiss, J. Math. Phys., 23 (1982), 531–538 | DOI | MR | Zbl

[7] A. P. Fordy, Physica D, 52 (1991), 204–210 | DOI | MR | Zbl

[8] R. Conte, A. P. Fordy, A. Pickering, Physica D, 69 (1993), 33–58 | DOI | MR | Zbl

[9] A. Ramani, B. Dorizzi, B. Grammaticos, Phys. Rev. Lett., 49 (1982), 1539–1541 | DOI | MR

[10] B. Grammaticos, B. Dorizzi, A. Ramani, J. Math. Phys., 24 (1983), 2289–2295 | DOI | MR | Zbl

[11] J. Drach, C. R. Acad. Sci. Paris, 168 (1919), 337–340 | Zbl

[12] S. Baker, V. Z. Enol'skii, A. P. Fordy, Phys. Lett. A, 201 (1995), 167–174 | DOI | MR | Zbl

[13] J. Hietarinta, J. Math. Phys., 25 (1984), 1833–1840 | DOI | MR

[14] J. Hietarinta, Phys. Rep., 147 (1987), 87–154 | DOI | MR

[15] S. Baker, Squared eigenfunction representations of integrable hierarchies, Ph. D. Thesis, Univ. of Leeds, Leeds, 1995 | Zbl

[16] S. Wojciechowski, Physica Scripta, 31 (1985), 433–438 | DOI | MR | Zbl

[17] V. Ravoson, L. Gavrilov, R. Caboz, J. Math. Phys., 34 (1993), 2385–2393 | DOI | MR | Zbl

[18] C. Verhoeven, M. Musette, R. Conte, J. Math. Phys., 43 (2002), 1906–1915 ; E-print nlin.SI/0112030 | DOI | MR | Zbl

[19] T. Bountis, H. Segur, F. Vivaldi, Phys. Rev. A, 25 (1982), 1257–1264 | DOI | MR

[20] V. Ravoson, A. Ramani, B. Grammaticos, Phys. Lett. A, 191 (1994), 91–95 | DOI | MR | Zbl

[21] A. P. Fordy, P. P. Kulish, Commun. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl

[22] V. G. Drinfeld, V. V. Sokolov, DAN SSSR, 258 (1981), 11–16 | MR | Zbl

[23] M. Muzette, K. Verkhoven, TMF, 137:2 (2003), 239–252 | DOI | MR

[24] C. Verhoeven, M. Musette, R. Conte, “On reductions of some KdV-type systems and their link to the quartic Hénon–Heiles Hamiltonian”, Bilinear Integrable Systems – from Classical to Quantum, Continuous to Discrete, Proc. of the NATO Advanced Research Workshop (St. Petersburg, Russia, 15–19 September 2002), NATO Sci. Ser. II: Math. Phys. Chem., 201, eds. L. Faddeev, P. van Moerbeke, F. Lambert, Kluwer, Dordrecht, 2005 ; E-print nlin.SI/0405034 | MR

[25] S. Abenda, Yu. Fedorov, Acta Appl. Math., 60 (2000), 137–178 | DOI | MR | Zbl

[26] N. Farkas, E. Kra, Riemann surfaces, Springer, Berlin, 1980 | MR

[27] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[28] K. Verkhoven, M. Muzette, R. Kont, TMF, 134:1 (2003), 148–159 ; E-print nlin.SI/0301011 | DOI | MR

[29] C. Verhoeven, Integration of Hamiltonian systems of Hénon-Heiles type and their associated soliton equations, Ph. D. thesis, Vrije Univ. Brussel, Brussel, 2003

[30] A. Ramani, “Inverse scattering, ordinary differential equations of Painlevé-type, and Hirota's bilinear formalism”, Collective Phenomena, Proc. of the 4th Int. Conf. (Moscow, 1981), Ann. New York Acad. Sci., 373, ed. J. L. Lebowitz, New York Acad. Sci., N.Y., 1981, 54–67 | DOI | MR