Mots-clés : hyperelliptic separation of variables.
@article{TMF_2005_144_1_a1,
author = {R. Conte and M. Musette and C. Verhoeven},
title = {Completeness of the {Cubic} and {Quartic} {Henon{\textendash}Heiles} {Hamiltonians}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {14--25},
year = {2005},
volume = {144},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a1/}
}
TY - JOUR AU - R. Conte AU - M. Musette AU - C. Verhoeven TI - Completeness of the Cubic and Quartic Henon–Heiles Hamiltonians JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 14 EP - 25 VL - 144 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a1/ LA - ru ID - TMF_2005_144_1_a1 ER -
R. Conte; M. Musette; C. Verhoeven. Completeness of the Cubic and Quartic Henon–Heiles Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 144 (2005) no. 1, pp. 14-25. http://geodesic.mathdoc.fr/item/TMF_2005_144_1_a1/
[1] M. Hénon, C. Heiles, Astron. J., 69 (1964), 73–79 | DOI | MR
[2] R. Conte, M. Musette, C. Verhoeven, J. Nonlinear Math. Phys. Suppl., 12:1 (2005), 212–227 | DOI | MR
[3] C. M. Cosgrove, Stud. Appl. Math., 104 (2000), 1–65 | DOI | MR | Zbl
[4] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[5] R. Conte, “The Painlevé approach to nonlinear ordinary differential equations”, The Painlevé Property. One Century Later (Cargèse School, 3–22 June 1996), CRM Series in Mathematical Physics, ed. R. Conte, Springer, N.Y., 1999, 77–180 ; E-print solv-int/9710020 | MR
[6] Y. F. Chang, M. Tabor, J. Weiss, J. Math. Phys., 23 (1982), 531–538 | DOI | MR | Zbl
[7] A. P. Fordy, Physica D, 52 (1991), 204–210 | DOI | MR | Zbl
[8] R. Conte, A. P. Fordy, A. Pickering, Physica D, 69 (1993), 33–58 | DOI | MR | Zbl
[9] A. Ramani, B. Dorizzi, B. Grammaticos, Phys. Rev. Lett., 49 (1982), 1539–1541 | DOI | MR
[10] B. Grammaticos, B. Dorizzi, A. Ramani, J. Math. Phys., 24 (1983), 2289–2295 | DOI | MR | Zbl
[11] J. Drach, C. R. Acad. Sci. Paris, 168 (1919), 337–340 | Zbl
[12] S. Baker, V. Z. Enol'skii, A. P. Fordy, Phys. Lett. A, 201 (1995), 167–174 | DOI | MR | Zbl
[13] J. Hietarinta, J. Math. Phys., 25 (1984), 1833–1840 | DOI | MR
[14] J. Hietarinta, Phys. Rep., 147 (1987), 87–154 | DOI | MR
[15] S. Baker, Squared eigenfunction representations of integrable hierarchies, Ph. D. Thesis, Univ. of Leeds, Leeds, 1995 | Zbl
[16] S. Wojciechowski, Physica Scripta, 31 (1985), 433–438 | DOI | MR | Zbl
[17] V. Ravoson, L. Gavrilov, R. Caboz, J. Math. Phys., 34 (1993), 2385–2393 | DOI | MR | Zbl
[18] C. Verhoeven, M. Musette, R. Conte, J. Math. Phys., 43 (2002), 1906–1915 ; E-print nlin.SI/0112030 | DOI | MR | Zbl
[19] T. Bountis, H. Segur, F. Vivaldi, Phys. Rev. A, 25 (1982), 1257–1264 | DOI | MR
[20] V. Ravoson, A. Ramani, B. Grammaticos, Phys. Lett. A, 191 (1994), 91–95 | DOI | MR | Zbl
[21] A. P. Fordy, P. P. Kulish, Commun. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl
[22] V. G. Drinfeld, V. V. Sokolov, DAN SSSR, 258 (1981), 11–16 | MR | Zbl
[23] M. Muzette, K. Verkhoven, TMF, 137:2 (2003), 239–252 | DOI | MR
[24] C. Verhoeven, M. Musette, R. Conte, “On reductions of some KdV-type systems and their link to the quartic Hénon–Heiles Hamiltonian”, Bilinear Integrable Systems – from Classical to Quantum, Continuous to Discrete, Proc. of the NATO Advanced Research Workshop (St. Petersburg, Russia, 15–19 September 2002), NATO Sci. Ser. II: Math. Phys. Chem., 201, eds. L. Faddeev, P. van Moerbeke, F. Lambert, Kluwer, Dordrecht, 2005 ; E-print nlin.SI/0405034 | MR
[25] S. Abenda, Yu. Fedorov, Acta Appl. Math., 60 (2000), 137–178 | DOI | MR | Zbl
[26] N. Farkas, E. Kra, Riemann surfaces, Springer, Berlin, 1980 | MR
[27] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR
[28] K. Verkhoven, M. Muzette, R. Kont, TMF, 134:1 (2003), 148–159 ; E-print nlin.SI/0301011 | DOI | MR
[29] C. Verhoeven, Integration of Hamiltonian systems of Hénon-Heiles type and their associated soliton equations, Ph. D. thesis, Vrije Univ. Brussel, Brussel, 2003
[30] A. Ramani, “Inverse scattering, ordinary differential equations of Painlevé-type, and Hirota's bilinear formalism”, Collective Phenomena, Proc. of the 4th Int. Conf. (Moscow, 1981), Ann. New York Acad. Sci., 373, ed. J. L. Lebowitz, New York Acad. Sci., N.Y., 1981, 54–67 | DOI | MR