Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 417-430 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain formulas for resonances and eigenvalues embedded in the continuous spectrum that are similar to formulas in the standard perturbation theory. We prove that although the imaginary part of the first-order correction to the eigenvalue embedded in the continuous spectrum is zero, the perturbed eigenfunction, as a rule, ceases to be square-summable.
Keywords: Schrodinger operator, perturbation theory, resonance, eigenvalue.
@article{TMF_2005_143_3_a6,
     author = {Yu. P. Chuburin},
     title = {Perturbation {Theory} of {Resonances} and {Embedded} {Eigenvalues} of the {Schrodinger} {Operator} {For} a {Crystal} {Film}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {417--430},
     year = {2005},
     volume = {143},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a6/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 417
EP  - 430
VL  - 143
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a6/
LA  - ru
ID  - TMF_2005_143_3_a6
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 417-430
%V 143
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a6/
%G ru
%F TMF_2005_143_3_a6
Yu. P. Chuburin. Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 417-430. http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a6/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[2] E. B. Davies, Proc. Cambr. Philos. Soc., 82 (1977), 327 | DOI | MR | Zbl

[3] Yu. P. Chuburin, TMF, 110 (1997), 443 | DOI | MR | Zbl

[4] Yu. P. Chuburin, TMF, 72 (1987), 120 | MR

[5] J. S. Howland, Pacific J. of Math., 55:1 (1974), 157 | DOI | MR | Zbl

[6] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1966 | Zbl

[7] J. Rauch, J. Funct. Anal., 35 (1980), 304 | DOI | MR | Zbl

[8] Yu. P. Chuburin, TMF, 126 (2001), 196 | DOI | MR | Zbl

[9] J. S. Howland, J. of Math. Anal. and Appl., 36 (1971), 12 | DOI | MR | Zbl

[10] S. Albeverio, F. Gesztezy, R. Høegh-Krohn, W. Kirsch, J. Operator Theory, 12 (1984), 101 | MR | Zbl

[11] F. Gesztezy, “Perturbation theory for resonances in terms of Fredholm determinants”, Resonances – Models and Phenomena, Proc. of the Workshop (Bielefeld, 1984), Lect. Notes in Phys., 211, eds. S. Albeverio, L. S. Ferreira, L. Streit, Springer, Berlin, 1984, 78 | DOI | MR

[12] S. Albeverio, F. Gestezi, R. Khoeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[13] M. S. Smetanina, Yu. P. Chuburin, Vestn. Udm. un-ta. Matematika, 2003, 19

[14] M. Rid, B. Saimon, Sovremennye metody matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[15] Yu. P. Chuburin, TMF, 116 (1998), 134 | DOI | MR | Zbl

[16] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[17] Kh. Tsikon, R. Frëze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[18] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR