A Generalized Coordinate-Momentum Representation in Quantum Mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 401-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a one-parameter family of $(q,p)$-representations of quantum mechanics; the Wigner distribution function and the distribution function we previously derived are particular cases in this family. We find the solutions o the evolution equations or the microscopic classical and quantum distribution functions in the form of integrals over paths in a phase space. We show that when varying canonical variables in the Green's function of the quantum Liouville equation, we must use the total increment o the action functional in its path-integral representation, whereas in the Green's function of the classical Liouville equation, the linear part o the increment is sufficient. A correspondence between the classical and quantum schemes holds only under a certain choice of the value of the distribution family parameter. This value corresponds to the distribution unction previously found.
Keywords: $(q,p)$-representation, path integral.
Mots-clés : Liouville equation
@article{TMF_2005_143_3_a5,
     author = {L. S. Kuz'menkov and S. G. Maksimov},
     title = {A {Generalized} {Coordinate-Momentum} {Representation} in {Quantum} {Mechanics}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {401--416},
     year = {2005},
     volume = {143},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a5/}
}
TY  - JOUR
AU  - L. S. Kuz'menkov
AU  - S. G. Maksimov
TI  - A Generalized Coordinate-Momentum Representation in Quantum Mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 401
EP  - 416
VL  - 143
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a5/
LA  - ru
ID  - TMF_2005_143_3_a5
ER  - 
%0 Journal Article
%A L. S. Kuz'menkov
%A S. G. Maksimov
%T A Generalized Coordinate-Momentum Representation in Quantum Mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 401-416
%V 143
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a5/
%G ru
%F TMF_2005_143_3_a5
L. S. Kuz'menkov; S. G. Maksimov. A Generalized Coordinate-Momentum Representation in Quantum Mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 401-416. http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a5/

[1] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR

[2] V. Ovsienko, J. Diff. Geom., 45 (1997), 390–406 | DOI | MR | Zbl

[3] T. Curtright, C. Zachos, Mod. Phys. Lett. A, 15 (2001), 2381–2385 | DOI | MR

[4] K. Takahashi, Progr. Theor. Phys. Suppl., 1989, no. 98, 109–156 | DOI

[5] L. S. Kuzmenkov, S. G. Maksimov, TMF, 131:2 (2002), 231–243 | DOI | MR

[6] S. G. Maximov, L. S. Kuzmenkov, Int. J. Theor. Phys. Group Theory and Nonlinear Optics, 11:1 (2004), 1–29 | MR

[7] S. G. Maximov, L. S. Kuzmenkov, Int. J. Theor. Phys. Group Theory and Nonlinear Optics, 11:1 (2004), 31–54 | MR

[8] S. G. Maximov, L. S. Kuzmenkov, J. L. Guardado Zavala, Int. J. Quantum Chem., 100 (2004), 311–323 | DOI

[9] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR

[10] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR