Equivalence of Many-Gluon Green's Functions in the Duffin–Kemmer–Petieu and Klein–Gordon–Fock Statistical Quantum Field Theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 368-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the equivalence of many-gluon Green's functions in the Duffin–Kemmer–Petieu and Klein–Gordon–Fock statistical quantum field theories. The proof is based on the functional integral formulation for the statistical generating functional in a finite-temperature quantum field theory. As an illustration, we calculate one-loop polarization operators in both theories and show that their expressions indeed coincide.
Keywords: statistical quantum field theory, gluon Green's functions, path integral, renormalization
Mots-clés : equivalence.
@article{TMF_2005_143_3_a3,
     author = {B. M. Pimentel and V. Ya. Fainberg},
     title = {Equivalence of {Many-Gluon} {Green's} {Functions} in the {Duffin{\textendash}Kemmer{\textendash}Petieu} and {Klein{\textendash}Gordon{\textendash}Fock} {Statistical} {Quantum} {Field} {Theories}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--374},
     year = {2005},
     volume = {143},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a3/}
}
TY  - JOUR
AU  - B. M. Pimentel
AU  - V. Ya. Fainberg
TI  - Equivalence of Many-Gluon Green's Functions in the Duffin–Kemmer–Petieu and Klein–Gordon–Fock Statistical Quantum Field Theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 368
EP  - 374
VL  - 143
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a3/
LA  - ru
ID  - TMF_2005_143_3_a3
ER  - 
%0 Journal Article
%A B. M. Pimentel
%A V. Ya. Fainberg
%T Equivalence of Many-Gluon Green's Functions in the Duffin–Kemmer–Petieu and Klein–Gordon–Fock Statistical Quantum Field Theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 368-374
%V 143
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a3/
%G ru
%F TMF_2005_143_3_a3
B. M. Pimentel; V. Ya. Fainberg. Equivalence of Many-Gluon Green's Functions in the Duffin–Kemmer–Petieu and Klein–Gordon–Fock Statistical Quantum Field Theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 368-374. http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a3/

[1] B. M. Pimentel, V. Ya. Fainberg, TMF, 124:3 (2000), 445 | DOI | MR | Zbl

[2] R. Casana, V. Ya. Fainberg, B. M. Pimentel, J. S. Valverde, Phys. Lett. A, 316 (2003), 33 | DOI | MR | Zbl

[3] Kh. S. Valverde, B. M. Pimentel, V. Ya. Fainberg, TMF, 140:1 (2004), 44 | DOI | MR | Zbl

[4] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, 2-e izd., Nauka, M., 1988 | MR | Zbl

[5] M. B. Voloshin, K. A. Ter-Martirosyan, Teoriya kalibrovochnogo vzaimodeistviya elementarnykh chastits, Energoatomizdat, M., 1984 | MR

[6] V. N. Popov, L. D. Faddeev, UFN, 111 (1973), 437 | MR

[7] E. S. Fradkin, Tr. FIAN, 29, 1965, 7 | Zbl

[8] H. G. Rothe, Lattice Gauge Theories: An Introduction, World Scientific, Singapore, 1996 | MR

[9] V. Ya. Fainberg, B. M. Pimentel, J. S. Valverde, “Dispersion Methods in DKP Theory”, Quantization, Gauge Theories and Strings, Proc. of the Int. Meeting, dedicated to the memory of E. S. Fradkin. V. II (Moscow, June 5–10, 2000), eds. A. Semikhatov, M. Vasiliev, V. Zaikin, World Scientific, Singapore, 2001, 79 | MR