Infrared Asymptotics of the Heat Kernel and Nonlocal Effective Action
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 328-356 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review recent results in the nonperturbative theory of the heat kernel and its late-time asymptotic properties responsible for the infrared behavior of the quantum effective action for massless theories. In particular, we derive a generalization of the Coleman–Weinberg potential for theories with an inhomogeneous background field. This generalization represents a new nonlocal, nonperturbative action accounting for the effects in a transition domain between the space-time interior and its infinity. In four dimensions, these effects delocalize the logarithmic Coleman-Weinberg potential, while in $d>4$, they are dominated by a new powerlike, renormalization-independent nonlocal structure. We also consider the nonperturbative behavior of the heat kernel in a curved space-time with an asymptotically flat geometry. In particular, we analyze the conformal properties of the heat kernel for a conformally invariant scalar field and discuss the problem of segregating the local cosmological term from the nonlocal effective action.
Keywords: effective action, nonlocal field theories, Schwinger–DeWitt expansion.
@article{TMF_2005_143_3_a1,
     author = {A. O. Barvinsky and D. V. Nesterov},
     title = {Infrared {Asymptotics} of the {Heat} {Kernel} and {Nonlocal} {Effective} {Action}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {328--356},
     year = {2005},
     volume = {143},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a1/}
}
TY  - JOUR
AU  - A. O. Barvinsky
AU  - D. V. Nesterov
TI  - Infrared Asymptotics of the Heat Kernel and Nonlocal Effective Action
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 328
EP  - 356
VL  - 143
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a1/
LA  - ru
ID  - TMF_2005_143_3_a1
ER  - 
%0 Journal Article
%A A. O. Barvinsky
%A D. V. Nesterov
%T Infrared Asymptotics of the Heat Kernel and Nonlocal Effective Action
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 328-356
%V 143
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a1/
%G ru
%F TMF_2005_143_3_a1
A. O. Barvinsky; D. V. Nesterov. Infrared Asymptotics of the Heat Kernel and Nonlocal Effective Action. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 328-356. http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a1/

[1] H. van Damm, M. J. Veltman, Nucl. Phys. D, 22 (1970), 397 ; В. И. Захаров, Письма в ЖЭТФ, 12:9 (1970), 447; A. I. Vainstein, Phys. Lett., 39 (1972), 393 | DOI | DOI

[2] M. A. Luty, M. Porrati, R. Rattazzi, JHEP, 0309 (2003), 029 ; ; V. A. Rubakov, Strong coupling in brane-induced gravity in five dimensions, E-print hep-th/0303116E-print hep-th/0303125 | DOI | MR

[3] V. F. Mukhanov, A. Wipf, A. I. Zelnikov, Phys. Lett. B, 332 (1994), 283 | DOI | MR

[4] A. G. Mirzabekian, G. A. Vilkovisky, Class. Quantum Gravit., 12 (1995), 2173 ; ; Ann. Phys., 270 (1998), 391 ; E-print hep-th/9504028E-print gr-qc/9803006 | DOI | MR | Zbl | DOI | MR | Zbl

[5] N. C. Tsamis, R. P. Woodard, Nucl. Phys., 474 (1996), 235 ; ; Ann. Phys., 253 (1997), 1 E-print hep-th/9602315 | DOI | MR | Zbl | DOI | MR | Zbl

[6] R. Gregory, V. A. Rubakov, S. M. Sibiryakov, Phys. Rev. Lett., 84 (2000), 5928 ; E-print hep-th/0002072 | DOI | MR

[7] G. R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B, 485 (2000), 208 | DOI | MR | Zbl

[8] M. E. Soussa, R. P. Woodard, Class. Quantum Gravit., 20 (2003), 2737 ; E-print astro-ph/0302030 | DOI | MR | Zbl

[9] A. O. Barvinsky, G. A. Vilkovisky, Nucl. Phys. B, 282 (1987), 163 | DOI | MR

[10] A. O. Barvinsky, Phys. Lett. B, 572 (2003), 109 ; E-print hep-th/0304229 | DOI | MR | Zbl

[11] A. O. Barvinsky, G. A. Vilkovisky, Nucl. Phys. B, 333 (1990), 471 | DOI | MR

[12] A. O. Barvinsky, Yu. V. Gusev, G. A. Vilkovisky, V. V. Zhytnikov, Covariant Perturbation Theory. IV: Third Order in the Curvature, Report of the University of Manitoba. Preprint, Univ. Manitoba, Winnipeg, 1993

[13] A. O. Barvinsky, Yu. V. Gusev, G. A. Vilkovisky, V. V. Zhytnikov, J. Math. Phys., 35 (1994), 3543 | DOI | MR | Zbl

[14] A. O. Barvinsky, V. F. Mukhanov, Phys. Rev. D, 66 (2002), 065007 ; E-print hep-th/0203132 | DOI | MR

[15] A. O. Barvinsky, Yu. V. Gusev, V. F. Mukhanov, D. V. Nesterov, Phys. Rev. D, 68 (2003), 105003 ; E-print hep-th/0306052 | DOI | MR

[16] A. O. Barvinsky, G. A. Vilkovisky, Phys. Rep., 119 (1985), 1 | DOI | MR

[17] B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, N.Y., 1965 | MR

[18] A. O. Barvinsky, Yu. V. Gusev, G. A. Vilkovisky, V. V. Zhytnikov, J. Math. Phys., 35 (1994), 3525 | DOI | MR | Zbl

[19] V. P. Frolov, G. A. Vilkovisky, Phys. Lett. B, 106 (1981), 307 ; “Spherically-symmetric collapse in quantum gravity”, Quantum Gravity, Proc. of the Second Seminar on Quantum Gravity (Moscow, 1981), eds. M. A. Markov, P. C. West, Plenum, N.Y., 1984, 267 | DOI | MR | DOI | MR

[20] A. M. Polyakov, Phys. Lett. B, 103 (1981), 207 | DOI | MR

[21] A. O. Barvinsky, D. V. Nesterov, Nonperturbative heat kernel and nonlocal effective action, Preprint ESI-1444, ESI, Vienna, 2003; E-print hep-th/0402043

[22] R. Camporesi, Phys. Rep., 196 (1990), 1 | DOI | MR

[23] G. W. Gibbons, S. W. Hawking, Phys. Rev. D, 15 (1977), 2752 | DOI | MR

[24] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, G. Gabadadze, Nonlocal modification of gravity and the cosmological constant problem, E-print hep-th/0209227

[25] E. S. Fradkin, G. A. Vilkovisky, Phys. Lett. B, 73 (1978), 209 | DOI | MR

[26] E. S. Fradkin, G. A. Vilkovisky, Phys. Rev. D, 8 (1973), 4241 | DOI | MR

[27] S. Weinberg, Rev. Mod. Phys., 61 (1989), 1 | DOI | MR | Zbl

[28] E. V. Gorbar, I. L. Shapiro, JHEP, 0302 (2003), 021 | DOI | MR