Dependence of the Superfluidity Criterion on the Capillary Radius
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 307-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We replace the conditions on the capillary boundary with the Born–Karman periodic conditions, i. e., we consider a two-dimensional torus of radius $L_2$. If the velocity of a superfluid liquid exceeds $8\pi\hbar/(mL_2)$, then it brakes because of the friction against the eddy formed by pairs (similar to the pairs in the Andreev reflection).
Keywords: superfluidity, thermodynamic limit, quasiparticle spectrum, capillary thickness, eddy.
Mots-clés : ultrasecond quantization
@article{TMF_2005_143_3_a0,
     author = {V. P. Maslov},
     title = {Dependence of the {Superfluidity} {Criterion} on the {Capillary} {Radius}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {307--327},
     year = {2005},
     volume = {143},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a0/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Dependence of the Superfluidity Criterion on the Capillary Radius
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 307
EP  - 327
VL  - 143
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a0/
LA  - ru
ID  - TMF_2005_143_3_a0
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Dependence of the Superfluidity Criterion on the Capillary Radius
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 307-327
%V 143
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a0/
%G ru
%F TMF_2005_143_3_a0
V. P. Maslov. Dependence of the Superfluidity Criterion on the Capillary Radius. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 307-327. http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a0/

[1] V. P. Maslov, TMF, 132:3 (2002), 388–398 | DOI | MR | Zbl

[2] V. P. Maslov, Kvantovanie termodinamiki i ultravtorichnoe kvantovanie, Institut kompyuternykh issledovanii, M., 2001

[3] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[4] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR

[5] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v zadache mnogikh chastits i kvantovoi teorii polya, Editorial URSS, M., 2000

[6] N. N. Bogolyubov, Izbrannye trudy v trekh tomakh, T. 2, Naukova dumka, Kiev, 1970 | MR

[7] M. V. Fedoryuk, UMN, 26:1 (1971), 67–112 | MR | Zbl

[8] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR