Dependence of the Superfluidity Criterion on the Capillary Radius
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 307-327
Cet article a éte moissonné depuis la source Math-Net.Ru
We replace the conditions on the capillary boundary with the Born–Karman periodic conditions, i. e., we consider a two-dimensional torus of radius $L_2$. If the velocity of a superfluid liquid exceeds $8\pi\hbar/(mL_2)$, then it brakes because of the friction against the eddy formed by pairs (similar to the pairs in the Andreev reflection).
Keywords:
superfluidity, thermodynamic limit, quasiparticle spectrum, capillary thickness, eddy.
Mots-clés : ultrasecond quantization
Mots-clés : ultrasecond quantization
@article{TMF_2005_143_3_a0,
author = {V. P. Maslov},
title = {Dependence of the {Superfluidity} {Criterion} on the {Capillary} {Radius}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {307--327},
year = {2005},
volume = {143},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a0/}
}
V. P. Maslov. Dependence of the Superfluidity Criterion on the Capillary Radius. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 3, pp. 307-327. http://geodesic.mathdoc.fr/item/TMF_2005_143_3_a0/
[1] V. P. Maslov, TMF, 132:3 (2002), 388–398 | DOI | MR | Zbl
[2] V. P. Maslov, Kvantovanie termodinamiki i ultravtorichnoe kvantovanie, Institut kompyuternykh issledovanii, M., 2001
[3] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR
[4] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR
[5] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v zadache mnogikh chastits i kvantovoi teorii polya, Editorial URSS, M., 2000
[6] N. N. Bogolyubov, Izbrannye trudy v trekh tomakh, T. 2, Naukova dumka, Kiev, 1970 | MR
[7] M. V. Fedoryuk, UMN, 26:1 (1971), 67–112 | MR | Zbl
[8] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR